Synthesis of enantiomerically pure divinyl- and diallylcarbinols

Bernd Schmidt* and Holger Wildemann
Universität Dortmund, Fachbereich Chemie, Organische Chemie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany. E-mail: bschmidt@chemie.uni-dortmund.de

Received (in Cambridge, UK) 28th January 2002, Accepted 8th March 2002
First published as an Advance Article on the web 25th March 2002

Acylated oxazolidinones and bornane sultams can be cleaved to divinyl- and diallylcarbinols by treatment with vinyl- or allylmetal compounds. For the preparation of divinylcarbinols, acylated bornane sultams are the starting materials of choice, while for the preparation of diallylcarbinols acylated oxazolidinones and bornane sultams work equally well.

Introduction

Carbinols with unsaturated side chains are interesting starting materials for a variety of synthetic transformations. For example, divinylcarbinols have been employed in hydroacylation reactions, ${ }^{1}$ formation of phosphorus heterocycles, ${ }^{2}$ enantioselective epoxidation, ${ }^{3-5}$ palladium-catalyzed malonate addition, ${ }^{6}$ catalytic asymmetric intramolecular hydrosilation ${ }^{7}$ and radical cyclizations. ${ }^{8}$ Over the past few years several examples have been reported where divinylcarbinols played a key role in enantioselective ${ }^{9,10}$ and diastereoselective ring closing metathesis reactions. ${ }^{1-15}$ Diallylcarbinols have been used in silylformylation, ${ }^{16,17}$ Pauson-Khand reactions, ${ }^{18}$ Prinscyclizations, ${ }^{19}$ and various other reactions. ${ }^{20-23}$ Applications in olefin metathesis have included the formation of cyclopentenols, ${ }^{24}$ spirocyclic cyclopentenes ${ }^{25}$ and oxacycles. ${ }^{26,27}$ Carbinols are conveniently prepared from esters by treatment with excess organometallic reagent. Thus, enantiomerically pure carbinols with a stereogenic centre adjacent to the alcohol moiety become available from esters with a centre of chirality in the α-position, e.g. α-hydroxy carboxylic acid esters ${ }^{13}$ or α-amino acid esters. ${ }^{15,28}$ Well-established methods for the preparation of enantiomerically pure carboxylic acids and derivatives use chiral amine auxiliaries, such as oxazolidinones ${ }^{29,30}$ or camphor sultams. ${ }^{31}$ Standard methods for the cleavage of these auxiliaries are reduction to the primary alcohols, or hydrolysis to the free carboxylic acids. Surprisingly, the cleavage of oxazolidinones or camphor sultams using organometallic reagents has hardly been investigated. We are aware of only one example for each of these cases: Kashima et al. reported several years ago the formation of a diallylcarbinol by addition of an allylzinc reagent to achiral benzoylated oxazolidinone in excellent yield, ${ }^{32}$ and the cleavage of an acylated sultam with methylmagnesium iodide to yield a dimethylcarbinol has been reported by Curran et al. ${ }^{33}$ In this contribution we describe the scope and limitations of a novel synthesis of α-chiral divinyl- and diallylcarbinols.

Results and discussion

Alkylation of acylated oxazolidinones and bornane sultams

Acylated oxazolidinones and sultams were obtained from the corresponding carboxylic acids via formation of the mixed anhydrides using pivaloyl chloride. ${ }^{34}$ Alkylation of oxazolidinones 1a and 1b was achieved by treatment with NaHMDS, followed by allyl iodide or benzyl bromide, respectively, to give oxazolidinones 2a-c. Dihydropyran 2d was obtained from 2c by ring closing metathesis using $3 \mathrm{~mol} \%$ of Grubbs'

Scheme 1 Reagents and conditions: i, NaHMDS (1.5 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{ICH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ or $\mathrm{BrCH}_{2} \mathrm{Ph}$; ii, $\left[\mathrm{Cl}_{2}\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}\right]$ ($3 \mathrm{~mol} \%$), DCM, $20^{\circ} \mathrm{C}$.
catalyst (Scheme 1). ${ }^{35}$ Alkylation of acylated bornane sultams 3a-d was achieved under the same conditions. From sultams 3a-d [derived from (S)-camphorsulfonic acid] alkylation products $\mathbf{4 a - g}$ result, which have, compared to products $\mathbf{2 a - d}$, the opposite configuration of the α-position. $\mathbf{4 f}$ was prepared by ring closing olefin metathesis of $\mathbf{4 e}$ in the presence of Grubbs' catalyst (Scheme 2).

$$
\begin{aligned}
& \text { 3a } \mathrm{R}^{1}=\mathrm{Me} \\
& \text { 3b } R^{1}=\text { allyl } \\
& \text { 3c } \mathrm{R}^{1}=\mathrm{OMe} \\
& \text { 3d } \mathrm{R}^{1}=\mathrm{O} \text {-allyl } \\
& \text { 4a } R^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\operatorname{allyl}(53 \%) \\
& \text { 4b } R^{1}=\text { allyl; } R^{2}=-\mathrm{Bn} \text { (65\%) } \\
& \text { 4c } R^{1}=\mathrm{OMe} ; \mathrm{R}^{2}=\operatorname{allyl} \text { (63\%) } \\
& R^{1}=O M e ; R^{2}=B n(44 \%) \\
& \text { 4d } R^{1}=O M e ; R^{2}=\operatorname{Bn}(44 \%) \\
& \begin{array}{l}
\text { ii) } \lcm{4 e} \quad \mathrm{R}^{1}=\mathrm{O}-\mathrm{allyl} ; \mathrm{R}^{2}=\operatorname{allyl}(63 \%) \\
\longrightarrow 4 f \quad R^{1}, R^{2}=-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}-(83 \%)
\end{array} \\
& \mathbf{4 g} \mathrm{R}^{1}=\mathrm{O} \text {-allyl; } \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et} \text { (64\%) }
\end{aligned}
$$

Scheme 2 Reagents and conditions: i, NaHMDS (1.5 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{ICH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ or $\mathrm{BrCH}_{2} \mathrm{Ph}$ or $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$; ii, $\left[\mathrm{Cl}_{2}\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}\right](3 \mathrm{~mol} \%), \mathrm{DCM}, 20^{\circ} \mathrm{C}$.

We also investigated the alkylation of oxazolidinones acylated with allylated lactic acid and mandelic acid. 2-Allyloxypropionic acid (5a) was converted into the acylated oxazolidinone 6a. Allylation of $\mathbf{6 a}$ to the metathesis precursor 7 was
achieved in only moderate yield of 35% and a diastereomeric ratio of $10: 1$, using NaHMDS and allyl iodide. Ring closing metathesis of 7 gave the enantiomerically and diastereomerically pure dihydropyran 8. 2-Allyloxymandelic acid (5b) was converted into the acylated valine-derived oxazolidinone analogously. However, the allylation reaction failed. Instead, allyl benzoate 9 , which was unambiguously identified by comparison of its spectroscopic data, was the only isolable product. The mechanism leading to the formation of allyl benzoate remains unclear (Scheme 3).

Scheme 3 Reagents and conditions: $\mathrm{i}, \mathrm{NEt}_{3}, \mathrm{PivCl}$, then lithiated oxazolidinone $[(S)-6 a, 74 \%$; 6b, $57 \%(\mathrm{dr}=1: 1)]$; ii, NaHMDS (1.5 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{ICH}_{2} \mathrm{CH}=\mathrm{CH}_{2}(\mathbf{7 a}, 35 \% ; \mathbf{9}, 47 \%$); iii, $\left[\mathrm{Cl}_{2}\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}\right](3 \mathrm{~mol} \%), \mathrm{DCM}, 20^{\circ} \mathrm{C}(80 \%$ of $\mathbf{8})$.

Formation of diallylcarbinols

Upon treatment of an acylated oxazolidinone with excess organometallic reagent, cleavage of the heterocycle by nucleophilic attack at the carbonyl carbon may occur. The report by Kashima et al. demonstrates that this does not seem to be a problem if the allylzinc reagent is used, the corresponding magnesium compound, however, was not investigated previously. Treatment of acylated oxazolidinones $\mathbf{2 a - d}$ with a fourfold excess of allylmagnesium bromide leads to a clean cleavage of the chiral auxiliary. Starting from (S)-phenylalanine-derived oxazolidinones, the R-configured products 10a-d and the free oxazolidinone $\mathbf{1 1}$ are formed. The products are easily separated and no side products resulting from the cleavage of the heterocycle were detected. Cleavage of the acylated sultams $\mathbf{4 a}-\mathbf{c}$ and 4e under the same conditions gives S-configured diallylcarbinols 12a-c and 12e and the free bornane sultams 13 in good yields. Examples 10a/12a and 10c/12e were obtained in both enantiomeric forms (Scheme 4 and Table 1). The values of the optical rotations are identical within the range of experimental error.

Formation of divinylcarbinols

After we had observed that cleavage of acylated oxazolidinones with allylmagnesium bromide is a very smooth process, we were very surprised to see that cleavage with the vinylmagnesium compound was not straightforward at all. The formation of butenones 15 was an expected side reaction, these products

Table 1 Formation of diallylcarbinols from oxazolidinones 2 or bornane sultams 4

Starting material	Product	R^{1}	R^{2}	Yield (\%)
2a	10a	Me	Allyl	70
2b	10b	Me	Bn	82
2 c	10c	OAllyl	Allyl	76
2 d	10d	$\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$		63
4 a	12a	Me	Allyl	83
4b	12b	Allyl	Bn	64
4 c	12c	OMe	Allyl	85
4 e	12e	OAllyl	Allyl	96

Scheme 4 Reagents and conditions: i, AllylMgBr (1.0 M solution in ether, 4 equiv.), ether, $-78^{\circ} \mathrm{C}$, then aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution.
resulting from 1,4- rather than 1,2 -addition of the second equivalent of vinylmagnesium chloride. ${ }^{27}$ In the case of 2a,b, however, neither the expected divinylcarbinol $\mathbf{1 4 a , b}$ nor the expected side product, butenone $\mathbf{1 5 a}, \mathbf{b}$, were observed. Instead, the oxazolidinone is cleaved to yield acrylates 16a,b. The situation changes if an ether functionality is present in the α-position. $\mathbf{2 c}$ is cleaved under the same conditions to yield all three products $\mathbf{1 4 c}, \mathbf{1 5 c}$ and $\mathbf{1 6 c}$ in a $1.5: 1: 1$ ratio. It has been described in the literature that the formation of 1,4 -addition products can be suppressed by transmetallation with ceric chloride. ${ }^{36}$ When we repeated the cleavage of $2 \mathbf{a}-\mathbf{c}$ under these conditions, very similar results were obtained for $\mathbf{2 a}, \mathbf{b}$. In the case of 2 c only the divinylcarbinol 14 c was isolated in moderate yield (40%). Formation of the corresponding 1,4-addition product 15 c and of acrylate $\mathbf{1 6 c}$ was not observed under these conditions. In the case of sterically congested oxazolidinone 8a, the acrylate $\mathbf{1 7}$ was formed exclusively, despite the chelating oxygen present in the molecule. It is interesting to note that similarly substituted esters react with vinylmagnesium chloride with exclusive formation of 1,4 -addition products of type $\mathbf{1 5}$ (Scheme 5).
Formation of acrylates $\mathbf{1 6}$ is remarkable, because even in the presence of a fourfold excess of vinyl metal compound only one vinyl moiety is transferred to the oxazolidinone. A plausible explanation is the intermediate formation of stable tetrahedral intermediates A, which, analogously to the Weinreb-amides, ${ }^{37}$ are stabilized by chelation and decompose upon hydrolysis to

Scheme 5 Reagents and conditions: $\mathrm{i}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CHMgCl}$ (2.1 equiv.), THF, $-78^{\circ} \mathrm{C}$, then. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution: $\mathbf{2 a} \longrightarrow \mathbf{1 6 a}(60 \%), \mathbf{2 b} \longrightarrow \mathbf{1 6 b}$ (70\%), 2c $\longrightarrow \mathbf{1 4 c}(28 \%)+\mathbf{1 5 c}(19 \%)+\mathbf{1 6 c}(19 \%), \mathbf{8 a} \longrightarrow 17(40 \%)$; ii, CeCl_{3} (4.0 equiv.), $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHMgCl}$ (3.6 equiv.), $-78^{\circ} \mathrm{C}$, then aq. HCl $(1 \mathrm{M}): \mathbf{2 a} \longrightarrow \mathbf{1 6 a}(57 \%), \mathbf{2 b} \longrightarrow \mathbf{1 6 b}(67 \%), \mathbf{2 c} \longrightarrow \mathbf{1 5} \mathbf{c}(40 \%)$.
the acrylates 16. In the case of $\mathbf{2 c}$ an additional donor ligand (the ether moiety in the α-position) is able to coordinate to the metal and form a five-membered chelate complex (structure B). This might explain why acrylate $\mathbf{1 6 c}$ is formed only in minor amounts or not at all in this case (Fig. 1).

A

Products 16,17

Products 14 and 15

Fig. 1 Rationalization of different product distributions in the cleavage reactions of $\mathbf{2 a - c}$.

We saw a good chance to avoid this undesired acrylate formation by using the sultam- rather than the oxazolidinoneauxiliary. Surprisingly, the initially investigated acylated bornane sultams $\mathbf{4 a}, \mathbf{b}$ were recovered unchanged in nearly quantitative yield upon treatment with vinylmagnesium or vinylcerium reagent. In contrast, treatment of $\mathbf{4 c - g}$ (which all have an oxygen atom in the α-position) with the vinyl metal compounds leads to a clean and rapid formation of the corresponding divinylcarbinols 18c-g (when Grignard reagents are used, the butenone by-products 19 are observed) and the free camphor sultam 13. The inertness of $\mathbf{4 a}, \mathbf{b}$ towards the vinyl metal compounds suggests that a chelation effect similar to the one described for the oxazolidinones is working here. Obviously, intramolecular coordination of the metal by an ether oxygen facilitates nucleophilic attack at the carbonyl carbon. The formation of $\mathbf{1 8 g}$ is especially remarkable. This divinylcarbinol results from the chemoselective cleavage of the amide in $\mathbf{4 g}$. As long as stoichiometric amounts of vinyl metal compound are used, the ester group is not attacked. It might be speculated that this unusual chemoselectivity also originates from the intermediate formation of a chelate complex (Scheme 6 and Table 2).

Table 2 Formation of divinylcarbinols from bornane sultams 4

Starting material	R^{1}	R^{2}	Conditions ${ }^{\text {a }}$	Yield (\%)	
				18	19
4a	Me	Allyl	i	b	
4a	Me	Allyl	ii	b	
4b	Allyl	Bn	i	b	
4b	Allyl	Bn	ii	b	
4c	OMe	Allyl	ii	70	-
4d	OMe	Bn	ii	73	-
4 e	OAllyl	Allyl	i	59	20
4 e	OAllyl	Allyl	ii	79	-
4 f	$-\mathrm{OCH}_{2}$	$\mathrm{H}=\mathrm{CHCH}_{2}-$	ii	62	-
4g	OAllyl	$-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	i	43	17
${ }^{a}$ Conditions i and ii as given in Scheme $6{ }^{\text {b }}$ No conversion.					

Scheme 6 Reagents and conditions: i, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHMgCl}$ (2.1 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$, then. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution; ii, CeCl_{3} (4.0 equiv.), $\mathrm{H}_{2} \mathrm{C}=$ CHMgCl (3.6 equiv.), $-78^{\circ} \mathrm{C}$, then aq. $\mathrm{HCl}(1 \mathrm{M})$.

Investigations directed towards the selective formation of butenones

But-1-en-4-ones with a centre of chirality in the α-position are normally prepared in a two-step procedure by transamidation of acylated oxazolidinones or sultams with N,O-dimethylhydroxylamine to the corresponding Weinreb-amides, and subsequent addition of butenylmagnesium bromide. ${ }^{38-40}$ Direct addition of butenylmagnesium bromide to the acylated oxazolidinones and sultams would result in the formation of the corresponding carbinols. A process leading directly from the acylated chiral auxiliaries to the butenones might be an attractive alternative. As outlined above, vinyl Grignard reagents normally give this transformation only as a side reaction. ${ }^{41}$ A vinylcopper compound is the reagent of choice if selective 1,4 -addition is the goal. ${ }^{42}$ Thus, we investigated the cleavage of a bornane sultam auxiliary using a vinylcopper compound (obtained by transmetallation of vinylmagnesium chloride with copper iodide) for one example. Conversion of 4 e to butenone 19 e is highly regioselective, however, the reaction is rather slow. The butenone $\mathbf{1 9 e}$ was isolated as the only product in 45% yield, along with 50% of the starting material $4 \mathbf{e}$ (Scheme 7).

Scheme 7 Reagents and conditions: i, CuI (2.0 equiv.), $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHMgCl}$ (5.0 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$ (45%).

Application of carbinols in ring closing metathesis reactions

Divinylcarbinols derived from α-hydroxy carboxylic acids are precursors for diastereoselective ring closing metathesis reactions, a field recently investigated by ourselves ${ }^{14,43}$ and others. ${ }^{12,26,44}$ The sequence outlined in this contribution makes starting materials conveniently accessible that are not directly prepared from commercially available or easily prepared enantiomerically pure α-hydroxy carboxylic acids. Ring closing metathesis of the divinylcarbinol $\mathbf{1 8 g}$ in the presence of Grubbs' catalyst yields the dihydropyran $\mathbf{2 0}$ with an exo-vinyl side chain. Ring closing metathesis of the diallylcarbinol 10b requires elevated temperatures: in the presence of Grubbs' catalyst, no conversion was observed at ambient temperature, while the reaction proceeded smoothly in refluxing toluene to give the enantiomerically pure cyclopentenol 21 (Scheme 8).

18g

10b

20

21

Scheme 8 Reagents and conditions: i, $\left[\mathrm{Cl}_{2}\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}\right](3 \mathrm{~mol} \%)$, $\mathrm{DCM}, 20^{\circ} \mathrm{C}(69 \%)$; ii, $\left[\mathrm{Cl}_{2}\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}\right](5 \mathrm{~mol} \%)$, toluene, $110^{\circ} \mathrm{C}$ (79\%).

In conclusion, we have developed a novel route to enantiomerically pure carbinols with unsaturated side chains. Synthetic concepts directed towards the differentiation of vinyl or allyl side chains using olefin metathesis and other transformations are currently under investigation in our laboratory.

Experimental

Instrumentation, product identification and general experimental methods have been described previously. ${ }^{45} J$ values are given in Hz . The number of coupled protons was analyzed by APT experiments and is denoted by a number in parentheses following the δ_{C} value. Optical rotations are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

General procedure for the preparation of acylated oxazolidinones and sultams

To a solution of the corresponding acid (74 mmol) and triethylamine ($12.2 \mathrm{ml}, 87 \mathrm{mmol}$) in THF (100 ml) was slowly added pivaloyl chloride ($9.20 \mathrm{ml}, 74 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of dry argon. The mixture was stirred at this temperature for 5 min and then for 1 h at $0^{\circ} \mathrm{C}$. In a second flask, a solution of the corresponding ($4 S$)-4-benzyloxazolidin-2-one or ($2 S$)-bornane-10,2-sultam (62 mmol) in THF (100 ml) was cooled to $-78^{\circ} \mathrm{C}$ and $n-\operatorname{BuLi}(25.8 \mathrm{ml}$ of a 2.4 M solution in hexanes, 62 mmol) was added via syringe. The solution was then stirred for 30 min at $-78^{\circ} \mathrm{C}$. The first solution was recooled to $-78^{\circ} \mathrm{C}$ and then the cold solution of the lithium salt of the oxazolidinone or sultam was added rapidly. Stirring was continued at this temperature for 15 min and then at $0^{\circ} \mathrm{C}$ until the starting material was fully consumed, as indicated by TLC (cyclohexane-methyl tert-butyl ether (MTBE) 2:1, approxi-
mately 30 min). The reaction was quenched by addition of water (100 ml). The aqueous layer was extracted with MTBE and the combined organic extracts were dried with MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography on silica using cyclohexane-MTBE mixtures as the eluent.

(4S)-4-Benzyl-3-propionyloxazolidin-2-one (1a)

From ($4 S$)-4-benzyloxazolidin-2-one ($5.00 \mathrm{~g}, 28.2 \mathrm{mmol}$) and propionic acid ($2.10 \mathrm{ml}, 28.2 \mathrm{mmol}$) 1a $(4.10 \mathrm{~g}, 62 \%)$ was obtained. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.23(2 \mathrm{H}, \mathrm{Ph})$, $7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.15-7.11(2 \mathrm{H}, \mathrm{Ph}), 4.59$ (dddd, 1H, $J=9.5$, $9.0,3.3,3.0, H C N), 4.12\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,9.0, H_{2} \mathrm{COC}=\mathrm{O}\right), 4.08$ (dd, 1H, $J=9.0,3.3, H_{2} \mathrm{COC}=\mathrm{O}$), 3.22 (dd, $1 \mathrm{H}, J=13.3,3.0$, $\left.H_{2} \mathrm{CCHN}\right), 2.91\left(\mathrm{dm}, 1 \mathrm{H}, J=7.3, H_{2} \mathrm{CCH}_{3}\right), 2.84(\mathrm{dm}, 1 \mathrm{H}, J=$ 7.3, $H_{2} \mathrm{CCH}_{3}$), $2.69\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,9.5, H_{2} \mathrm{CCHN}\right), 1.12(\mathrm{t}$, $\left.3 \mathrm{H}, J=7.3, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.0[(0)$, CCH_{2}], 153.4 [(0), CO$], 135.2$ [(0), Ph], 129.3, 128.8, 127.2 [(1), Ph], $66.1\left[(2), C \mathrm{H}_{2} \mathrm{O}\right], 55.0[(1), C \mathrm{HN}], 37.8,29.1$ [(2), $\left.C \mathrm{H}_{2}\right], 8.2$ [(3), CH_{3}].

(4S)-3-(2-Allyloxyethanoyl)-4-benzyloxazolidin-2-one (1b)

From ($4 S$)-4-benzyloxazolidin-2-one ($4.50 \mathrm{~g}, 25.4 \mathrm{mmol}$) and 2-allyloxyacetic acid ($2.95 \mathrm{~g}, 25.4 \mathrm{mmol}$), $\mathbf{1 b}(5.45 \mathrm{~g}, 78 \%)$ was obtained. MS (EI) $m / z(\%) 275\left(\mathrm{M}^{+},<5\right), 234$ (100), 216 (60), 188 (40), 160 (80), 134 (99). IR (film): $v / \mathrm{cm}^{-1} 1782 \mathrm{~s}, 1662 \mathrm{~s}$, $1394 \mathrm{~m}, 1263 \mathrm{~m}, 1215 \mathrm{~m}, 984 \mathrm{~m}, 702 \mathrm{~m}$. Found: C, $65.8 \% ;$ H, 6.6%; $\mathrm{N}, 4.9 \% \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}$ requires $\mathrm{C}, 65.4 \% ; \mathrm{H}, 6.2 \%$; $\mathrm{N}, 5.1 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.19$ ($3 \mathrm{H}, \mathrm{Ph}$), 7.17-7.10 ($2 \mathrm{H}, \mathrm{Ph}$), 5.90 (dddd, $1 \mathrm{H}, J=17.3,10.5,5.8,5.8, H \mathrm{C}=\mathrm{H}_{2}$), 5.28 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.19 (dddd, $1 \mathrm{H}, J=$ $\left.10.5,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.61\left(\mathrm{~d}, 2 \mathrm{H}, J=3.0, H_{2} \mathrm{CC}=\mathrm{O}\right)$, 4.22 (dd, 1H, $\left.J=9.0,8.0, H_{2} \mathrm{COC}=\mathrm{O}\right), 4.16$ (dd, $1 \mathrm{H}, J=9.0,3.0$, $\left.H_{2} \mathrm{COC}=\mathrm{O}\right), 4.11\left(\mathrm{~m}, 1 \mathrm{H}, H_{2} \mathrm{CO} / H \mathrm{CN}\right), 4.07\left(\mathrm{~m}, 1 \mathrm{H}, H_{2} \mathrm{CO} /\right.$ $H \mathrm{CN}), 4.03\left(\mathrm{~m}, 1 \mathrm{H}, H_{2} \mathrm{CO} / \mathrm{HCN}\right), 3.26(\mathrm{dd}, 1 \mathrm{H}, J=13.3,3.0$, $\left.H_{2} \mathrm{CCHN}\right), 2.75\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,8.8, H_{2} \mathrm{CCHN}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2$ [(0), CCH_{2}], 153.4 [(0), CO], 134.9 [(0), Ph], 133.7 [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 129.4, 129.0, 127.4, [(1), Ph], $118.2\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 72.5,69.5,67.2\left[(2), \mathrm{CH}_{2} \mathrm{O}\right], 54.8[(1)$, $C \mathrm{HN}], 37.7$ [(2), $\left.\mathrm{CH}_{2} \mathrm{CHN}\right] .[a]_{\mathrm{D}}^{20}+66.2\left(c 1.50\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(2R)- N-Propionylbornane-10,2-sultam (3a)

From ($2 S$)-Bornane-10,2-sultam ($10.00 \mathrm{~g}, 46.4 \mathrm{mmol}$) and propionic acid ($3.46 \mathrm{ml}, 46.4 \mathrm{mmol}$) 3a ($10.37 \mathrm{~g}, 83 \%$) was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82(\mathrm{dd}, 1 \mathrm{H}, J=7.8$, $5.0, H \mathrm{CN}), 3.46\left(\mathrm{~d}, 1 \mathrm{H}, J=14.0, H_{2} \mathrm{CS}\right), 3.39(\mathrm{~d}, 1 \mathrm{H}, J=14.0$, $\left.H_{2} \mathrm{CS}\right), 2.76-2.64\left(2 \mathrm{H}, H_{2} \mathrm{CC}=\mathrm{O}\right), 2.10\left(\mathrm{dm}, 1 \mathrm{H}, J=14.0, H_{2} \mathrm{C}\right)$, $2.03\left(\mathrm{dd}, 1 \mathrm{H}, J=14.0,7.8, H_{2} \mathrm{C}\right), 1.91-1.81\left(3 \mathrm{H}, H_{2} \mathrm{C}, H \mathrm{C}\right), 1.37$ (dm, $\left.1 \mathrm{H}, J=9.8, H_{2} \mathrm{C}\right), 1.31\left(\mathrm{dm}, 1 \mathrm{H}, J=9.5, H_{2} \mathrm{C}\right), 1.12$ ($\mathrm{t}, 3 \mathrm{H}, J=7.3, H_{3} \mathrm{CCH}_{2}$), 1.11 ($\left.\mathrm{s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right), 0.97\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6$ [(0), $\left.C=\mathrm{O}\right], 65.2$ [(1), $C \mathrm{HN}], 52.8\left[(2), \mathrm{CH}_{2} \mathrm{~S}\right], 48.4,47.7\left[(0), C_{\mathrm{q}}\right], 44.6[(1), C H]$, 38.4, 32.8, 28.8, $26.4\left[(2), \mathrm{CH}_{2}\right], 20.5,19.8,8.3\left[(3), \mathrm{CH}_{3}\right]$.

(2R)- N-(Pent-4-enoyl)bornane-10,2-sultam (3b)

From ($2 S$)-Bornane-10,2-sultam ($12.00 \mathrm{~g}, 55.8 \mathrm{mmol}$) and pentenoic acid ($5.70 \mathrm{ml}, 55.8 \mathrm{mmol}$) 3b ($15.60 \mathrm{~g}, 94 \%$) was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80$ (dddd, $1 \mathrm{H}, J=$ 17.3, 10.3, 6.5, $6.5, H \mathrm{C}=\mathrm{CH}_{2}$), 5.05 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5$, $1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 4.97 (dddd, $1 \mathrm{H}, J=10.3,1.5,1.5,1.5, H_{2} \mathrm{C}=$ CH), $3.84(\mathrm{dd}, 1 \mathrm{H}, J=7.3,5.5, H \mathrm{CN}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=13.8$, $H_{2} \mathrm{CS}$), $3.40\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8, H_{2} \mathrm{CS}\right), 2.84$ (ddm, $1 \mathrm{H}, J=16.8$, $9.0, H_{2} \mathrm{C}$), 2.76 (ddm, $\left.1 \mathrm{H}, J=16.8,9.3, H_{2} \mathrm{C}\right), 2.44-2.36(2 \mathrm{H}$, $\left.H_{2} \mathrm{C}\right), 2.09\left(\mathrm{dm}, 1 \mathrm{H}, J=14.1, H_{2} \mathrm{C}\right), 2.04(\mathrm{ddm}, 1 \mathrm{H}, J=14.1$, $\left.7.8, H_{2} \mathrm{C}\right), 1.92-1.81\left(3 \mathrm{H}, H_{2} \mathrm{C}, H \mathrm{C}\right), 1.38(\mathrm{dm}, 1 \mathrm{H}, J=8.5$, $\left.H_{2} \mathrm{C}\right), 1.35\left(\mathrm{dm}, 1 \mathrm{H}, J=8.3, H_{2} \mathrm{C}\right), 1.13\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right), 0.94(\mathrm{~s}$, $\left.3 \mathrm{H}, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2$ [(0), $\left.C=\mathrm{O}\right]$, $136.4\left[(1), C H=\mathrm{CH}_{2}\right], 115.7\left[(2), C \mathrm{H}_{2}=\mathrm{CH}\right], 65.2[(1), C \mathrm{HN}]$,
$52.9\left[(2), \mathrm{CH}_{2} \mathrm{~S}\right], 48.4,47.7\left[(0), C_{\mathrm{q}}\right], 44.6[(1), C H], 38.5,34.5$, 32.8, 28.3, $26.4\left[(2), \mathrm{CH}_{2}\right], 20.8,19.9\left[(3), \mathrm{CH}_{3}\right]$.

(2R)-N-(2-Methoxyethanoyl)bornane-10,2-sultam (3c)

From ($2 S$)-Bornane-10,2-sultam ($10.17 \mathrm{~g}, 47.2 \mathrm{mmol}$) and methoxyacetic acid ($3.46 \mathrm{ml}, 47.2 \mathrm{mmol}$) analytically pure 3 c ($13.24 \mathrm{~g}, 98 \%$) was obtained without further purification. Mp $118{ }^{\circ} \mathrm{C}$. MS (EI) $m / z(\%) 288\left(\mathrm{M}^{+}+1,100\right), 135(90), 93(40)$. IR (disk, KBr): $v / \mathrm{cm}^{-1} 2956 \mathrm{~m}, 1703 \mathrm{~s}, 1330 \mathrm{~s}, 1137 \mathrm{~s}, 986 \mathrm{~m}$. Found: C, $54.3 \% ; \mathrm{H}, 7.5 \%$; N, $5.0 \% \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{SN}$ requires C, 54.3%; H, 7.4\%; N, 4.9\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.41$ (d, $\left.1 \mathrm{H}, J=16.5, H_{2} \mathrm{CO}\right), 4.34$ (d, $\left.1 \mathrm{H}, J=16.5, H_{2} \mathrm{CO}\right), 3.87$ (dd, $1 \mathrm{H}, J=7.5,5.0, H \mathrm{CN}), 3.36\left(\mathrm{~d}, 1 \mathrm{H}, J=14.1, H_{2} \mathrm{CS}\right), 3.42(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}$), 3.40 (d, $\left.1 \mathrm{H}, J=14.1, \mathrm{H}_{2} \mathrm{CS}\right), 2.15(\mathrm{dm}, 1 \mathrm{H}, J=$ 14.1, $H_{2} \mathrm{C}$), 2.07 (dd, $\left.1 \mathrm{H}, J=14.1,7.5, H_{2} \mathrm{C}\right), 1.90-1.80(3 \mathrm{H}$, $\left.H_{2} \mathrm{C}, H \mathrm{C}\right), 1.40\left(\mathrm{ddm}, 1 \mathrm{H}, J=18.8,9.5, H_{2} \mathrm{C}\right), 1.30$ (ddm, $\left.1 \mathrm{H}, J=18.8,7.8, H_{2} \mathrm{C}\right), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right)$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7$ [(0), $\left.C=\mathrm{O}\right], 70.9[(2)$, $\left.\mathrm{CH}_{2} \mathrm{O}\right], 64.9$ [(1), CHN$], 59.5$ [(3), $\left.\mathrm{CH}_{3} \mathrm{O}\right], 52.6$ [(2), $\mathrm{CH}_{2} \mathrm{~S}$], 49.2, 47.8 [(0), C_{q}], 44.5 [(1), CH$], 38.1,32.7,26.3$ [(2), $\left.\mathrm{CH}_{2}\right]$, 20.7, $19.8\left[(3), \mathrm{CH}_{3}\right] .[a]_{\mathrm{D}}^{23}-107.8$ ($c 1.28$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(2R)-N-(2-Allyloxyethanoyl)bornane-10,2-sultam (3d)

From ($2 S$)-Bornane-10,2-sultam ($3.71 \mathrm{~g}, 17.2 \mathrm{mmol}$) and allyloxyacetic acid ($2.00 \mathrm{~g}, 17.2 \mathrm{mmol}$) $3 \mathrm{~d}(4.32 \mathrm{~g}, 80 \%)$ was obtained. Mp $52{ }^{\circ} \mathrm{C}$. MS (EI) $m / z(\%) 314\left(\mathrm{M}^{+}+1,60\right), 135$ (100), 93 (40), 79 (30). IR (disk, KBr): $v / \mathrm{cm}^{-1} 2931 \mathrm{~s}, 1719 \mathrm{~s}$, $1469 \mathrm{~s}, 1332 \mathrm{~s}, 1133 \mathrm{~s}, 776 \mathrm{~m}$. Found: C, $57.5 \%, \mathrm{H}, 7.3 \%$; N, 4.5%. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{SN}$ requires C, $57.5 \% ; \mathrm{H}, 7.4 \% ; \mathrm{N}, 4.5 \%{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88$ (dddd, $1 \mathrm{H}, J=17.1,10.3,5.8,5.8$, $H \mathrm{C}=\mathrm{CH}_{2}$), $5.27\left(\mathrm{dddd}, 1 \mathrm{H}, J=17.1,1.3,1.3,1.3, H_{2} \mathrm{C}=\mathrm{CH}\right)$, 5.18 (dddd, $\left.1 \mathrm{H}, J=10.3,1.3,1.3,1.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.46(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=16.5, H_{2} \mathrm{CC}=\mathrm{O}\right), 4.38\left(\mathrm{~d}, 1 \mathrm{H}, J=16.5, H_{2} \mathrm{CC}=\mathrm{O}\right), 4.09$ (dddd, $1 \mathrm{H}, J=12.5,5.8,1.3,1.3, \mathrm{H}_{2} \mathrm{CCH}=\mathrm{CH}_{2}$), 4.03 (dddd, $\left.1 \mathrm{H}, J=12.5,5.8,1.3,1.3, H_{2} \mathrm{CCH}=\mathrm{CH}_{2}\right), 3.85(\mathrm{dd}, 1 \mathrm{H}, J=7.8$, $5.0, H \mathrm{CN}$), 3.44 (d, $1 \mathrm{H}, J=13.8, H_{2} \mathrm{CS}$), 3.38 (d, $1 \mathrm{H}, J=13.8$, $H_{2} \mathrm{CS}$), 2.14 (ddm, 1H, $J=14.1,5.0, H_{2} \mathrm{C}$), 2.05 (dd, $1 \mathrm{H}, J=$ 14.1, 8.0, $\left.H_{2} \mathrm{C}\right), 1.92-1.80\left(3 \mathrm{H}, H_{2} \mathrm{C}, H \mathrm{C}\right), 1.39(\mathrm{dm}, 1 \mathrm{H}, J=$ $\left.10.0, H_{2} \mathrm{C}\right), 1.31\left(\mathrm{dm}, 1 \mathrm{H}, J=10.0, H_{2} \mathrm{C}\right), 1.09\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right), 0.93$ (s, $\left.3 \mathrm{H}, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9[(0), C=\mathrm{O}]$, $133.6\left[(1), C H=\mathrm{CH}_{2}\right], 118.2\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 72.5,68.3$ [(2), $\mathrm{CH}_{2} \mathrm{O}$], 64.9 [(1), CHN$], 52.6$ [(2), $\left.\mathrm{CH}_{2} \mathrm{~S}\right], 49.2,47.4$ [(0), C_{q}], $44.5[(1), C H], 38.1,32.7,26.3\left[(2), C H_{2}\right], 20.6,19.8\left[(3), C \mathrm{H}_{3}\right]$. $[a]_{\mathrm{D}}^{20}-115.0\left(c 1.55\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(4S)-3-[(2S)-2-Allyloxypropanoyl]-4-benzyloxazolidin-2-one (6a)

From ($4 S$)-4-benzyloxazolidin-2-one ($1.00 \mathrm{~g}, 5.6 \mathrm{mmol}$) and 2-allyloxypropionic acid ($0.73 \mathrm{~g}, 5.6 \mathrm{mmol}$), 6a ($1.20 \mathrm{~g}, 74 \%$) was obtained. MS (EI) $m / z(\%) 290\left(\mathrm{M}^{+}+1,<5\right), 248(50), 178$ (60), 117 (100), 91 (95). IR (film): $v / \mathrm{cm}^{-1} 1781 \mathrm{~s}, 1709 \mathrm{~s}, 1393 \mathrm{~m}$, $1261 \mathrm{~m}, 1220 \mathrm{~m}, 1108 \mathrm{~m}$. Found: C, $65.7 \%, \mathrm{H}, 6.7 \%$; N, 4.6%. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}$ requires C, $66.4 \% ; \mathrm{H}, 6.6 \%$; $\mathrm{N}, 4.8 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.24(2 \mathrm{H}, \mathrm{Ph}), 7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph})$, 7.17-7.14 (2H, Ph), 5.89 (dddd, $1 \mathrm{H}, J=17.3,10.5,5.8,5.8, H \mathrm{C}=$ CH_{2}), 5.25 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.15 (dddd, $\left.1 \mathrm{H}, J=10.5,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.08(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.5$, $H \mathrm{CCH}_{3}$), 4.62 (dddd, $1 \mathrm{H}, J=9.5,7.5,3.3,3.3, H \mathrm{CN}$), 4.18 (dd, $\left.1 \mathrm{H}, J=9.0,7.5, H_{2} \mathrm{COC}=\mathrm{O}\right), 4.14(\mathrm{dd}, 1 \mathrm{H}, J=9.0,3.0$, $H_{2} \mathrm{COC}=\mathrm{O}$), 4.04 (dddd, $1 \mathrm{H}, J=12.3,5.8,1.5,1.5, H_{2} \mathrm{COCH}$), 3.94 (dddd, $\left.1 \mathrm{H}, J=12.3,5.8,1.5,1.5, H_{2} \mathrm{COCH}\right), 3.28(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=13.5,3.3, H_{2} \mathrm{CCHN}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, J=13.5,9.5, H_{2} \mathrm{CCHN}\right)$, $1.37\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5$ [(0), CCH], 153.0 [(0), CO], 135.0 [(0), Ph], 134.3 [(1), $\mathrm{CH}=$ CH_{2}], 129.4, 129.0, 127.4 [(1), Ph], 117.9 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 73.4$ [(1), CHO], 71.2 [(2), $\left.\mathrm{CH}_{2} \mathrm{OCH}\right], 66.6$ [(2), $\left.\mathrm{CH}_{2} \mathrm{OC}\right], 55.4$ [(1), $C \mathrm{HN}], 37.7$ [(2), $\left.\mathrm{CH}_{2} \mathrm{Ph}\right], 18.5\left[(3), C \mathrm{H}_{3}\right] \cdot[a]_{\mathrm{D}}^{20}+2.8(c 1.20 \mathrm{in}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(4S)-3-[(2RIS)-2-Allyloxy-2-phenylethanoyl]-4-isopropyloxazo-lidin-2-one (6b)
From ($4 S$)-4-isopropyloxazolidin-2-one ($5.20 \mathrm{~g}, 40.0 \mathrm{mmol}$) and 2-allyloxymandelic acid ($7.69 \mathrm{~g}, 40.0 \mathrm{mmol}$), $\mathbf{6 b}(6.92 \mathrm{~g}$, 57%) was obtained as a 1:1 mixture of diastereoisomers. MS (EI) $m / z(\%) 304\left(\mathrm{M}^{+}+1,<5\right), 147$ (25), 105 (100), 91 (50), 77 (20). IR (film): $v / \mathrm{cm}^{-1} 1787 \mathrm{~s}, 1709 \mathrm{~s}, 1388 \mathrm{~s}, 1205 \mathrm{~m}, 1104 \mathrm{~m}$, $1025 \mathrm{~m}, 723 \mathrm{~m}$. Found: C, $67.1 \% ; \mathrm{H}, 6.8 \%$; N, 4.4%. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}$ requires C, 67.3%; H, 7.0%; N, $4.6 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52-7.46(4 \mathrm{H}, \mathrm{Ph}), 7.31-7.28(6 \mathrm{H}, \mathrm{Ph}), 6.29(\mathrm{~s}, 1 \mathrm{H}$, $H C O), 6.20(\mathrm{~s}, 1 \mathrm{H}, H \mathrm{CO}), 5.93$ (ddm, $1 \mathrm{H}, J=17.0,10.5, H \mathrm{C}=$ $\left.\mathrm{CH}_{2}\right), 5.88\left(\mathrm{ddm}, 1 \mathrm{H}, J=17.0,10.5, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.25(\mathrm{dm}, 2 \mathrm{H}$, $\left.J=17.0, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.17\left(\mathrm{dm}, 2 \mathrm{H}, J=10.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.49$ (ddd, $1 \mathrm{H}, J=8.5,4.0,3.5, H \mathrm{CN}), 4.30$ (ddd, $1 \mathrm{H}, J=8.5,4.0$, $3.5, H \mathrm{CN}), 4.24\left(\mathrm{dm}, 1 \mathrm{H}, J=8.5, H_{2} \mathrm{CO}\right), 4.14(\mathrm{dm}, 1 \mathrm{H}, J=8.5$, $\left.H_{2} \mathrm{CO}\right), 4.12\left(\mathrm{dm}, 1 \mathrm{H}, \mathrm{J}=9.0, H_{2} \mathrm{CO}\right), 4.08(\mathrm{dm}, 1 \mathrm{H}, J=9.0$, $H_{2} \mathrm{CO}$), 4.00 (br s, 4H, $\mathrm{H}_{2} \mathrm{CO}$), 2.48 [qqd, $1 \mathrm{H}, J=7.0,7.0,3.5$, $H \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$], 2.08 [qqd, $1 \mathrm{H}, J=7.0,7.0,3.5, H \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$], 0.89 (d, $\left.6 \mathrm{H}, J=7.0, H_{3} \mathrm{C}\right), 0.73\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0, H_{3} \mathrm{C}\right), 0.36(\mathrm{~d}, 3 \mathrm{H}, J=$ 7.0, $H_{3} \mathrm{C}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,170.7[(0)$, CCH], 153.4, 153.4 [(0), CO], 135.8, 135.6 [(0), Ph], 134.0, 133.9 [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 128.8, 128.6, 128.5, 128.5, 128.4, 128.4 [(1), Ph], 118.1, $118.1\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 78.0,77.9[(1), C \mathrm{HO}], 70.5,70.4$ [(2), $\left.\mathrm{CH}_{2} \mathrm{OCH}\right], 63.6,63.4$ [(2), $\left.\mathrm{CH}_{2} \mathrm{OC}\right], 58.9,57.8$ [(1), $\left.C \mathrm{HN}\right]$, 28.2, $28.0\left[(1), \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 17.9,17.5,14.5,14.0\left[(3), \mathrm{CH}_{3}\right]$.

General procedure for the alkylation of acylated oxazolidinones or sultams

A solution of NaHMDS (2.72 ml of a 2.0 M solution in THF, $5.5 \mathrm{mmol})$ was diluted with THF $(25 \mathrm{ml})$ and a solution of the corresponding N-acyl compound 1a,b or 3a-d (3.6 mmol) in THF (25 ml) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for one hour. A solution of allyl iodide, benzyl bromide or ethyl 2-bromoacetate (18.2 mmol) in THF (5 ml) was added and the mixture was stirred until the reaction was complete as indicated by TLC. The reaction was quenched by addition of water and the aqueous layer was extracted with MTBE. The combined organic extracts were dried with MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography on silica.

General procedure for ring closing metathesis: preparation of 2d, $4 f$ and $8 a$

To a solution of the corresponding metathesis precursor $2 \mathbf{c}, 4 \mathbf{4}$ or 7a (12.7 mmol) in DCM (50 ml) was added Grubbs' catalyst ($216 \mathrm{mg}, 3 \mathrm{~mol} \%$). The mixture was stirred until the starting material was fully consumed, as indicated by TLC. The solvent was evaporated off and the residue purified by flash chromatography on silica.

(4S)-4-Benzyl-3-[(2R)-2-methylpent-4-enoyl]oxazolidin-2-one (2a)

From 1a ($3.00 \mathrm{~g}, 12.9 \mathrm{mmol}$) and allyl iodide $(4.70 \mathrm{ml}$, 51.4 $\mathrm{mmol}) \mathbf{2 a}(2.27 \mathrm{~g}, 65 \%)$ was obtained. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.23-7.07(5 \mathrm{H}, \mathrm{Ph}), 5.70(d d d d, 1 \mathrm{H}, J=17.3,10.3$, $7.0,7.0, C H=\mathrm{CH}_{2}$), 4.98 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5,1.5, \mathrm{CH}_{2}=$ $\mathrm{CH}), 4.94\left(\mathrm{dm}, 1 \mathrm{H}, J=10.3, C \mathrm{H}_{2}=\mathrm{CH}\right), 4.56(\mathrm{dddd}, 1 \mathrm{H}, J=9.5$, $9.0,3.3,3.3, H \mathrm{CN}$), $4.06\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,9.0, H_{2} \mathrm{COC}=\mathrm{O}\right), 4.02$ (dd, $1 \mathrm{H}, J=9.0,3.3, H_{2} \mathrm{COC}=\mathrm{O}$), 3.74 (ddm, $1 \mathrm{H}, J=7.0,7.0$, $H C C=O$), 3.16 (dd, 1H, $\left.J=13.3,3.3, H_{2} \mathrm{CCHN}\right), 2.58(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=13.3,9.5, H_{2} \mathrm{CCHN}\right), 2.40(\mathrm{dddm}, 1 \mathrm{H}, J=14.0,7.0,7.0$, $\left.\mathrm{H}_{2} \mathrm{CCH}=\mathrm{CH}_{2}\right), 2.12\left(\mathrm{dddm}, 1 \mathrm{H}, J=14.0,7.0,7.0, \mathrm{H}_{2} \mathrm{CCH}=\right.$ $\left.\mathrm{CH}_{2}\right), 1.06\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 176.4 [(0), CCH ${ }_{2}$], 153.0 [(0), CO], 135.2 [(0), Ph], 135.2 [(1), $\left.C \mathrm{H}=\mathrm{CH}_{2}\right], 129.3,128.8,127.2$ [(1), Ph], 117.1 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right]$, 65.9 [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 55.3$ [(1), CHN$], 38.0,37.9$ [(2), CH_{2}], 37.0 [(1), $\left.\mathrm{C} \mathrm{HCH}_{3}\right], 16.3\left[(3), \mathrm{CH}_{3}\right]$.
(4S)-4-Benzyl-3-[(2R)-2-methyl-3-phenylpropanoyl]oxazolidin-2-one (2b)
From $\mathbf{1 a}(0.50 \mathrm{~g}, 2.1 \mathrm{mmol})$ and benzyl bromide $(1.30 \mathrm{ml}, 10.7$ $\mathrm{mmol}) \mathbf{2 b}(0.38 \mathrm{~g}, 55 \%)$ was obtained. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.23-7.11(8 \mathrm{H}, \mathrm{Ph}), 6.99-6.95(2 \mathrm{H}, \mathrm{Ph}), 4.58$ (dddd, $1 \mathrm{H}, J=9.5,9.3,3.3,3.3, H \mathrm{CN}), 4.11-4.04\left(2 \mathrm{H}, \mathrm{HCCH}_{3}\right.$, $\left.H_{2} \mathrm{COC}=\mathrm{O}\right), 4.02\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,3.0, H_{2} \mathrm{COC}=\mathrm{O}\right), 3.07(\mathrm{dd}$, $\left.1 \mathrm{H}, J=13.3,7.3, H_{2} \mathrm{CPh}\right), 2.99(\mathrm{dd}, 1 \mathrm{H}, J=13.5,3.3$, $H_{2} \mathrm{CCHN}$), 2.60 (dd, $1 \mathrm{H}, J=13.3,7.8, H_{2} \mathrm{CPh}$), 2.48 (dd, 1 H , $\left.J=13.5,9.3, H_{2} \mathrm{CCHN}\right), 1.11\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.5\left[(0), \mathrm{CCH}_{2}\right], 153.0$ [(0), CO], 139.1, 135.1 [(0), Ph], 129.3, 129.3, 128.8, 128.3, 127.2, 126.4 [(1), Ph], 65.8 [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 55.0$ [(1), CHN$], 39.8$ [(2), $\left.\mathrm{CH}_{2}\right], 39.5$ [(1), $\left.C \mathrm{HCH}_{3}\right], 37.6\left[(2), \mathrm{CH}_{2}\right], 16.7\left[(3), \mathrm{CH}_{3}\right]$.

(4S)-3-[(2R)-2-Allyloxypent-4-enoyl)-4-benzyloxazolidin-2-one (2c)

From 1b ($1.00 \mathrm{~g}, 3.6 \mathrm{mmol}$) and allyl iodide (1.66 ml , 18.2 mmol) 2c ($0.71 \mathrm{~g}, 62 \%$) was obtained. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.28-7.23(2 \mathrm{H}, \mathrm{Ph}), 7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.16-7.12(2 \mathrm{H}$, $\mathrm{Ph}), 5.91-5.80\left(2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}_{2}\right), 5.23$ (dddd, $1 \mathrm{H}, J=17.3,1.5$, $1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.11 (dddd, $1 \mathrm{H}, J=10.3,1.5,1.5,1.5, H_{2} \mathrm{C}=$ CH), 5.08 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.05 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.04 (dd, $1 \mathrm{H}, J=$ $7.0,4.8, H C O), 4.66$ (dddd, $1 \mathrm{H}, J=10.0,8.0,3.5,3.0, H \mathrm{CN}$), 4.19 (dd, $\left.1 \mathrm{H}, J=9.0,8.0, H_{2} \mathrm{COC}=\mathrm{O}\right), 4.13$ (dd, $1 \mathrm{H}, J=9.0,3.5$, $\mathrm{H}_{2} \mathrm{COC}=\mathrm{O}$), 4.04 (dddd, $1 \mathrm{H}, \mathrm{J}=12.3,5.5,1.5,1.5, H_{2} \mathrm{COCH}$), 3.88 (dddd, 1H, $J=12.3,5.8,1.5,1.5, H_{2} \mathrm{COCH}$), 3.22 (dd, 1H, $J=13.3,3.0, H_{2} \mathrm{CCHN}$), 2.63 (dd, $1 \mathrm{H}, J=13.3,10.0$, $\left.H_{2} \mathrm{CCHN}\right), 2.55\left(\mathrm{ddm}, 1 \mathrm{H}, \mathrm{J}=14.3,4.8, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.46(\mathrm{ddm}$, $\left.1 \mathrm{H}, J=14.3,7.0, \mathrm{H}_{2} \mathrm{CCHO}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.2 [(0), CCH], 153.0 [(0), CO], 134.9 [(0), Ph], 134.1, 132.9 $\left[(1), C H=\mathrm{CH}_{2}\right], 129.3,128.9,127.4[(1), \mathrm{Ph}], 118.1,177.6[(2)$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 76.7$ [(1), CHO], 71.4, 66.8 [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 55.0$ [(1), $C \mathrm{HN}$], 38.0, 37.2 [(2), $\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{CHN}$].

(4S)-3-[(R)-(3,6-Dihydro-2H-pyran-2-ylmethanoyl]-4-benzyloxazolidin-2-one (2d)

From 2c ($0.30 \mathrm{~g}, 1.0 \mathrm{mmol}$) and Grubbs' catalyst (24 mg , $3 \mathrm{~mol} \%$) $2 \mathrm{~d}(0.21 \mathrm{~g}, 77 \%)$ was obtained. MS (EI) $\mathrm{m} / \mathrm{z}(\%) 288$ ($\mathrm{M}^{+}+1,40$), 270 (30), 83 (70), 55 (100). IR (film): v / cm^{-1} 3032w, 2929w, 2835w, 1790s, 1709s, 1398m, 1256m, 1103m, 705 m . Found: C, $67.1 \% ; \mathrm{H}, 5.8 \%$; N, $4.7 \% . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}$ requires C, $66.9 \% ; \mathrm{H}, 6.0 \%$; N, $4.9 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(2 \mathrm{H}, \mathrm{Ph}), 7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.14-7.11(2 \mathrm{H}, \mathrm{Ph}) ; 5.79$ (dm, 1H, $J=10.3, \mathrm{CH}=\mathrm{CH}), 5.70(\mathrm{dm}, 1 \mathrm{H}, J=10.3, \mathrm{C} H=\mathrm{CH})$, 5.06 (dd, 1H, $J=7.8,5.5, \mathrm{CHO}$), 4.66 (dddd, 1H, $J=8.0,8.0$, $3.3,3.3, H \mathrm{CN}), 4.29(\mathrm{dm}, 1 \mathrm{H}, J=16.5, \mathrm{H} H \mathrm{CO}), 4.22(\mathrm{dm}, 1 \mathrm{H}$, $J=16.5, \mathrm{H} H \mathrm{CO}$), 4.21 (dd, $\left.1 \mathrm{H}, J=9.0,8.0, H_{2} \mathrm{COC}=\mathrm{O}\right), 4.14$ (dd, 1H, $\left.J=9.0,3.3, H_{2} \mathrm{COC}=\mathrm{O}\right), 3.17(\mathrm{dd}, 1 \mathrm{H}, J=13.3,3.3$, $H_{2} \mathrm{CCHN}$), 2.76 (dd, $1 \mathrm{H}, J=13.3,8.0, H_{2} \mathrm{CCHN}$), 2.35-2.30 $(2 \mathrm{H}, H H \mathrm{CCH}=) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0[(0)$, CCH], 152.7 [(0), CO], 134.8 [(0), Ph], 129.4, 128.8, 127.3 [(1), $\mathrm{Ph}], 126.0,122.7$ [(1), $\mathrm{CH}=\mathrm{CH}], 71.6$ [(1), C2], 66.6, 66.0 [(2), $\left.C \mathrm{H}_{2} \mathrm{O}\right], 54.9$ [(1), $\left.C \mathrm{HN}\right], 37.6$ [(2), $\left.\mathrm{CH}_{2} \mathrm{CHN}\right], 26.9$ [(2), $\mathrm{HHCCH}=] \cdot[a]_{\mathrm{D}}^{20}+132.4$ ($c 1.22$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(2R)- N-[(2S)-2-Methylpent-4-enoyl]bornane-10,2-sultam (4a)

From 3a ($2.00 \mathrm{~g}, 7.4 \mathrm{mmol}$) and allyl iodide $(2.71 \mathrm{ml}, 29.6$ $\mathrm{mmol}) 4 \mathrm{a}(1.22 \mathrm{~g}, 53 \%)$ was obtained. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.74\left(\right.$ dddd, $\left.1 \mathrm{H}, J=17.0,10.0,7.5,6.3, H \mathrm{C}=\mathrm{CH}_{2}\right)$, 5.04 (dddd, $1 \mathrm{H}, J=17.0,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 4.96 (dddd, $\left.1 \mathrm{H}, J=10.0,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 3.85(\mathrm{dd}, 1 \mathrm{H}, J=7.3,5.3$, $H C N), 3.47\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8, H_{2} \mathrm{CS}\right), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=13.8$, $H_{2} \mathrm{CS}$), 3.19 (dqm, $1 \mathrm{H}, J=7.5,6.5, H \mathrm{CCH}_{3}$), 2.41 (dddm, 1 H , $\left.J=13.8,7.5,6.3, H_{2} \mathrm{CCHCH}_{3}\right), 2.21(\mathrm{dddm}, 1 \mathrm{H}, J=13.8,7.5$, $\left.6.3, \mathrm{H}_{2} \mathrm{CCHCH}_{3}\right), 2.04-1.98\left(2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}\right), 1.92-1.79\left(3 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}\right.$, $H \mathrm{C}), 1.38\left(\mathrm{dm}, 1 \mathrm{H}, J=9.0, H_{2} \mathrm{C}\right), 1.30\left(\mathrm{dm}, 1 \mathrm{H}, J=9.0, H_{2} \mathrm{C}\right)$,
1.14 ($\mathrm{s}, 3 \mathrm{H}, J=6.5, H_{3} \mathrm{C}$), $1.13\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7$ [(0), $\left.C=\mathrm{O}\right], 135.0$ [(1), $\left.C H=\mathrm{CH}_{2}\right], 117.2\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 65.3$ [(1), CHN$], 53.2$ [(2), $\left.\mathrm{CH}_{2} \mathrm{~S}\right], 48.2,47.7$ [(0), C_{q}], $44.6[(1), C \mathrm{H}], 39.4$ [(2), $\left.\mathrm{CH}_{2}\right], 39.3$ [(1), CHCH_{3}], $38.5,32.9,26.4$ [(2), CH_{2}], 20.8, 19.9, 16.1 [(3), CH_{3}.

(2R)- N-[(2S)-2-Benzylpent-4-enoyl]bornane-10,2-sultam (4b)

From 3b ($2.00 \mathrm{~g}, 6.7 \mathrm{mmol}$) and benzyl bromide (3.20 ml , 26.9 mmol) 4b ($1.70 \mathrm{~g}, 65 \%$) was obtained. Mp $118{ }^{\circ} \mathrm{C}$. MS (EI) $m / z(\%) 388\left(\mathrm{M}^{+}+1,30\right), 135(25), 105(20), 91$ (100), 67 (20). IR (disk, KBr): $\sqrt{2} / \mathrm{cm}^{-1} 1684 \mathrm{~s}, 1331 \mathrm{~s}$, $1215 \mathrm{~s}, 1135 \mathrm{~s}, 1067 \mathrm{~m}$, 700 m , 538 s . Found: C, $67.9 \% ; \mathrm{H}, 7.5 \% ; \mathrm{N}, 3.5 \% . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{SN}$ requires C, 68.2%; H, 7.5%; N, $3.6 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.19-7.06(5 \mathrm{H}, \mathrm{Ph}), 5.74$ (dddd, $1 \mathrm{H}, J=17.1,10.3$, $7.0,7.0, C H=\mathrm{CH}_{2}$), 5.03 (dddd, $1 \mathrm{H}, J=17.1,1.5,1.5,1.5, C \mathrm{H}_{2}=$ CH), 4.98 (dddd, $\left.1 \mathrm{H}, J=10.3,1.5,1.5,1.5, \mathrm{CH}_{2}=\mathrm{CH}\right), 3.73(\mathrm{~m}$, $1 \mathrm{H}, H \mathrm{CN}$), 3.38 (m, 1H, HCC=O), 3.34 (d, 1H, $J=13.8, H_{2} \mathrm{CS}$), 3.30 (d, $1 \mathrm{H}, J=13.8, H_{2} \mathrm{CS}$), 2.88 (dd, $1 \mathrm{H}, J=13.8,8.5$, $H_{2} \mathrm{CPh}$), 2.74 (dd, $1 \mathrm{H}, J=13.8,7.0, H_{2} \mathrm{CPh}$), 2.58 (dddm, 1 H , $J=14.0,7.0,7.0, H_{2} \mathrm{CCH}=\mathrm{CH}_{2}$), 2.14 (dddm, $1 \mathrm{H}, J=14.0,7.0$, $\left.7.0, H_{2} \mathrm{CCH}=\mathrm{CH}_{2}\right), 1.89\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,5.5, H_{2} \mathrm{C}\right), 1.81-1.64$ $\left(4 \mathrm{H}, H_{2} \mathrm{C}, H \mathrm{C}\right), 1.26\left(\mathrm{dm}, 1 \mathrm{H}, J=10.0, H_{2} \mathrm{C}\right), 1.20(\mathrm{dm}, 1 \mathrm{H}$, $\left.J=7.8, H_{2} \mathrm{C}\right), 0.80\left(\mathrm{~m}, 3 \mathrm{H}, H_{2} \mathrm{C}\right), 0.61\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1$ [(0), $\mathrm{C}=\mathrm{O}$], 138.3 [(0), Ph], 135.2 [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 129.4, 128.2, 126.4 [(1), Ph], 117.3 [(2), $\mathrm{CH}_{2}=\mathrm{CH}$,
 [(1), CH], 38.9, 38.3, 35.3, 32.8, 26.3 [(2), CH_{2}], 20.5, 19.8 [(3), $\left.C \mathrm{H}_{3}\right]$. $[a]_{\mathrm{D}}^{20}-27.9\left(c 1.18\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(2R)- N-[(2S)-2-Methoxypent-4-enoyl]bornane-10,2-sultam (4c)
From 3c ($1.50 \mathrm{~g}, 5.2 \mathrm{mmol}$) and allyl iodide ($1.91 \mathrm{ml}, 20.9$ mmol) 4c ($1.07 \mathrm{~g}, 63 \%$) was obtained. Mp $158{ }^{\circ} \mathrm{C}$. MS (EI) $m / z(\%) 328\left(\mathrm{M}^{+}+1,20\right), 296(5), 222(5), 85$ (100), 55 (20). IR (disk, KBr): $v / \mathrm{cm}^{-1} 3002 \mathrm{~s}$, 2973s, 1697s, 1393m, 1326s, $1222 \mathrm{~s}, 1135 \mathrm{~s}, 915 \mathrm{~s}, 648 \mathrm{~m}, 537 \mathrm{~s}$. Found: C, 58.8% H, 7.6%; $\mathrm{N}, 4.2 \% . \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{SN}$ requires C, $58.7 \% ; \mathrm{H}, 7.7 \%$; $\mathrm{N}, 4.3 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83$ (dddd, $1 \mathrm{H}, J=17.0,10.3$, $\left.7.5,7.0, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.09\left(\mathrm{dm}, 1 \mathrm{H}, J=17.0, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.06(\mathrm{dm}$, $\left.1 \mathrm{H}, J=10.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.49(\mathrm{dd}, 1 \mathrm{H}, J=6.0,5.5, H \mathrm{CO}), 3.94$ (dd, $1 \mathrm{H}, J=7.5,4.8, H \mathrm{CN}$), 3.48 (d, $1 \mathrm{H}, J=13.8, H_{2} \mathrm{CS}$), 3.43 (d, 1H, J=13.8, $H_{2} \mathrm{CS}$), $3.35\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{CO}\right), 2.56(\mathrm{dm}, 1 \mathrm{H}, J=$ 14.3, $\mathrm{H}_{2} \mathrm{CCHO}$), 2.48 (dd, $1 \mathrm{H}, J=14.3,7.0, H_{2} \mathrm{CCHO}$), 2.07 (dd, $1 \mathrm{H}, J=14.0,7.5, H_{2} \mathrm{C}$), 1.96 (dm, $\left.1 \mathrm{H}, J=14.0, H_{2} \mathrm{C}\right), 1.92-$ $1.83\left(3 \mathrm{H}, H_{2} \mathrm{C}, H \mathrm{C}\right), 1.41\left(\mathrm{dm}, 1 \mathrm{H}, J=9.0, H_{2} \mathrm{C}\right), 1.34(\mathrm{dm}, 1 \mathrm{H}$, $J=9.0, H_{2} \mathrm{C}$), $1.12\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right), 0.95\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8[(0), C=\mathrm{O}], 132.7$ [(1), $\left.\mathrm{CH}=\mathrm{CH}_{2}\right]$, 118.2 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 79.7$ [(1), CHO], 65.0 [(1), CHN$], 58.0$ [(3), $\left.\mathrm{CH}_{3} \mathrm{O}\right], 53.1$ [(2), $\left.\mathrm{CH}_{2} \mathrm{~S}\right], 47.8,47.3$ [(0), C_{q}], 44.5 [(1), $C \mathrm{H}], 38.2,38.0,32.8,26.4\left[(2), C \mathrm{H}_{2}\right], 20.7,19.9\left[(3), C \mathrm{H}_{3}\right] .[a]_{\mathrm{D}}^{20}$ -10.2 (c 1.52 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(2R)- N-[(2S)-2-Methoxy-3-phenylpropanoyl]bornane-10,2sultam (4d)

From $3 \mathrm{c}(4.00 \mathrm{~g}, 13.9 \mathrm{mmol})$ and benzyl bromide (8.30 ml , 69.6 $\mathrm{mmol}) 4 \mathrm{~d}(2.33 \mathrm{~g}, 44 \%)$ was obtained. Mp $160{ }^{\circ} \mathrm{C}$. MS (EI) $m / z(\%) 378\left(\mathrm{M}^{+}+1,40\right), 346(20), 216(40), 135(100), 91$ (30). IR (disk, KBr): $v / \mathrm{cm}^{-1} 3002 \mathrm{~m}, 2966 \mathrm{~m}, 1694 \mathrm{~s}, 1330 \mathrm{~s}, 1284 \mathrm{~s}$, $1218 \mathrm{~s}, 1137 \mathrm{~s}, 700 \mathrm{~m}, 534 \mathrm{~s}$. Found: C, 63.6% H, 7.1%; N, 3.7%. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{SN}$ requires C, $63.6 \% ; \mathrm{H}, 7.2 \% ; \mathrm{N}, 3.7 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.23(4 \mathrm{H}, \mathrm{Ph}), 7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 4.61$ (dd, $1 \mathrm{H}, J=9.5,3.5, H C O), 3.94$ (dd, $1 \mathrm{H}, J=7.5,4.8, H C N$), 3.49 (d, 1H, $\left.J=13.8, H_{2} \mathrm{CS}\right), 3.44\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8, H_{2} \mathrm{CS}\right), 3.27$ (s, $3 \mathrm{H}, H_{3} \mathrm{CO}$), $3.06\left(\mathrm{dd}, 1 \mathrm{H}, J=13.8,3.5, H_{2} \mathrm{CPh}\right), 2.87(\mathrm{dd}$, $1 \mathrm{H}, J=13.8,9.5, H_{2} \mathrm{CPh}$), 2.08 (dd, $1 \mathrm{H}, J=13.8,7.5, H_{2} \mathrm{C}$), $1.95\left(\mathrm{dm}, 1 \mathrm{H}, J=13.8, H_{2} \mathrm{C}\right), 1.91-1.83\left(3 \mathrm{H}, H_{2} \mathrm{C}, H \mathrm{C}\right), 1.41$ (dm, $\left.1 \mathrm{H}, J=9.5, H_{2} \mathrm{C}\right), 1.33\left(\mathrm{dm}, 1 \mathrm{H}, J=9.5, H_{2} \mathrm{C}\right), 1.01(\mathrm{~s}, 3 \mathrm{H}$, $H_{3} \mathrm{C}$), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2$
$[(0), C=O], 136.9[(0), \mathrm{Ph}], 129.6,128.2,126.7[(1), \mathrm{Ph}], 81.4[(1)$, $C \mathrm{HO}], 65.0[(1), C \mathrm{HN}], 58.2\left[(3), C \mathrm{H}_{3} \mathrm{O}\right], 53.1\left[(2), \mathrm{CH}_{2} \mathrm{~S}\right]$, 48.7, $47.6\left[(0), C_{\mathrm{q}}\right], 44.5[(1), C H], 39.8,38.1,32.8,26.4[(2)$, $\left.\mathrm{CH}_{2}\right], 20.7,19.8\left[(3), \mathrm{CH}_{3}\right] \cdot[a]_{\mathrm{D}}^{25}-76.4\left(c 1.00\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(2R)-N-[(2S)-2-Allyloxypent-4-enoyl]bornane-10,2-sultam (4e)

From 3d ($6.00 \mathrm{~g}, 19.1 \mathrm{mmol}$) and allyl iodide $(8.75 \mathrm{ml}, 95.7$ mmol) $4 \mathrm{e}\left(4.25 \mathrm{~g}, 63 \%\right.$) was obtained. Mp $93{ }^{\circ} \mathrm{C}$. MS (EI) $\mathrm{m} / \mathrm{z}(\%) 354\left(\mathrm{M}^{+}+1,35\right), 135(30), 111$ (100), 93 (40), 67 (50), 55 (55). IR (disk, KBr): $v / \mathrm{cm}^{-1} 2941 \mathrm{~m}, 1695 \mathrm{~s}, 1330 \mathrm{~s}, 1273 \mathrm{~m}$, 1138s, $1062 \mathrm{~m}, 914 \mathrm{~m}, 545 \mathrm{~s}$. Found: C, 61.1%; H, 7.7%; N, 3.9%. $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{SN}$ requires $\mathrm{C}, 61.2 \% ; \mathrm{H}, 7.7 \% ; \mathrm{N}, 4.0 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.91-5.79\left(2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}_{2}\right.$), 5.27 (dddd, 1 H , $\left.J=17.1,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.15\left(\mathrm{dm}, 1 \mathrm{H}, J=10.3, H_{2} \mathrm{C}=\right.$ $\mathrm{CH}), 5.08\left(\mathrm{dm}, 1 \mathrm{H}, J=17.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.04(\mathrm{dm}, 1 \mathrm{H}, J=10.1$, $H_{2} \mathrm{C}=\mathrm{CH}$), 4.61 (dd, $1 \mathrm{H}, J=7.0,5.0, H \mathrm{CO}$), 4.07 (dddd, $1 \mathrm{H}, J=$ $12.8,5.5,1.5,1.5, H_{2} \mathrm{CO}$), $3.91(\mathrm{dd}, 1 \mathrm{H}, J=7.8,5.0, H \mathrm{CN}), 3.87$ (dddd, $\left.1 \mathrm{H}, J=12.8,6.0,1.5,1.5, H_{2} \mathrm{CO}\right), 3.47(\mathrm{~d}, 1 \mathrm{H}, J=13.8$, $H_{2} \mathrm{CS}$), $3.41\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8, H_{2} \mathrm{CS}\right), 2.57(\mathrm{ddm}, 1 \mathrm{H}, J=13.8$, $\left.5.0, H_{2} \mathrm{C}\right), 2.50\left(\mathrm{ddm}, 1 \mathrm{H}, J=13.8,7.0, H_{2} \mathrm{C}\right), 2.05(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.14.1,7.8, H_{2} \mathrm{C}\right), 1.95\left(\mathrm{dm}, 1 \mathrm{H}, J=14.1, H_{2} \mathrm{C}\right), 1.90-1.81(3 \mathrm{H}$, $\left.H_{2} \mathrm{C}, H \mathrm{C}\right), 1.40\left(\mathrm{~m}, 1 \mathrm{H}, H_{2} \mathrm{C}\right), 1.33\left(\mathrm{~m}, 1 \mathrm{H}, H_{2} \mathrm{C}\right), 1.11(\mathrm{~s}, 3 \mathrm{H}$, $H_{3} \mathrm{C}$), 0.94 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1$ [$(0), C=\mathrm{O}], 133.9,132.9\left[(1), C \mathrm{H}=\mathrm{CH}_{2}\right], 118.0,117.7\left[(2), \mathrm{CH}_{2}=\right.$ $\mathrm{CH}], 77.6$ [(1), CHO], 71.1 [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 65.0$ [(1), CHN$], 53.1$ [(2), $\left.C_{H_{2}} \mathrm{~S}\right], 48.6,47.8$ [(0), $\left.C_{\mathrm{q}}\right], 44.5[(1), C H], 38.2,38.1,32.8$, $26.4\left[(2), \mathrm{CH}_{2}\right], 20.7,19.8\left[(3), \mathrm{CH}_{3}\right] \cdot[a]_{\mathrm{D}}^{20}-96.6$ (c 1.55 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(2R)- $\mathrm{N}-[(1 S)-3,6$-Dihydro-2H-pyran-2-ylmethanoyl]bornane-10,2-sultam (4f)

From $4 \mathrm{e}(4.48 \mathrm{~g}, 12.7 \mathrm{mmol})$ and Grubbs' catalyst (216 mg , $3 \mathrm{~mol} \%) \mathbf{4 f}(3.44 \mathrm{~g}, 83 \%)$ was obtained. Mp $168^{\circ} \mathrm{C}$. MS (EI) $m / z(\%) 326\left(\mathrm{M}^{+}+1,80\right), 216(15), 135(10), 83$ (85), 55 (100). Found: C, $59.2 \% ; \mathrm{H}, 7.1 \%$; N, $4.2 \% \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{SN}$ requires C, $59.1 \% ; \mathrm{H}, 7.1 \% ; \mathrm{N}, 4.3 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80$ (ddm, 1H, $J=10.3,2.0, \mathrm{C} H=\mathrm{C} H$), 5.72 (dm, $1 \mathrm{H}, J=10.3, \mathrm{CH}=$ CH), $4.68(\mathrm{dd}, 1 \mathrm{H}, J=10.3,3.8, H \mathrm{CO}), 4.33(\mathrm{dm}, 1 \mathrm{H}, J=16.5$, $\mathrm{H} H \mathrm{CO}$), 4.25 (dm, 1H, $J=16.5, \mathrm{H} H \mathrm{CO}$), 3.92 (dd, $1 \mathrm{H}, J=7.8$, $4.8, H \mathrm{CN}), 3.47\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8, H_{2} \mathrm{CS}\right), 3.42(\mathrm{~d}, 1 \mathrm{H}, J=13.8$, $\left.H_{2} \mathrm{CS}\right), 2.41(\mathrm{dm}, 1 \mathrm{H}, J=16.8, \mathrm{H} H C C H=), 2.28(\mathrm{dm}, 1 \mathrm{H}, J=$ 16.8, $\mathrm{H} H \mathrm{CCH}=$), 2.09 (dd, $\left.1 \mathrm{H}, J=14.0,7.8, H_{2} \mathrm{C}\right), 1.97(\mathrm{dm}$, $1 \mathrm{H}, J=14.0, H_{2} \mathrm{C}$), 1.91-1.83 (3H, $\left.H_{2} \mathrm{C}, H \mathrm{C}\right), 1.45-1.30(2 \mathrm{H}$, $H_{2} \mathrm{C}$), $1.09\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6[(0), C=\mathrm{O}], 126.0,122.7[(1), C H=C H]$, 72.8 [(1), HCO], 65.7 [(2), HHCO], 64.9 [(1), CHN], 53.0 [(2), $\left.\mathrm{CH}_{2} \mathrm{~S}\right], 48.7,47.8\left[(0), C_{\mathrm{q}}\right], 44.4[(1), C \mathrm{H}], 38.0,32.6,28.6,26.4$ $\left[(2), \mathrm{CH}_{2}, C 3\right], 20.7,19.8\left[(3), \mathrm{CH}_{3}\right] .[a]_{\mathrm{D}}^{20}-179.0(c 1.75 \mathrm{in}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(2R)- N-[(2S)-2-Allyloxy-3-ethoxycarbonylpropanoyl]bornane-10,2-sultam ($\mathbf{4 g}$)

From 3d ($3.00 \mathrm{~g}, 9.6 \mathrm{mmol}$) and ethyl 2-bromoacetate (5.31 ml , $47.9 \mathrm{mmol}) 4 \mathrm{~g}(2.45 \mathrm{~g}, 64 \%)$ was obtained. MS (EI) $\mathrm{m} / \mathrm{z}(\%) 401$ $\left(\mathrm{M}^{+}+1,80\right), 399(100), 390(100), 354$ (85), 296 (100). IR (disk, $\mathrm{KBr}): ~ v / \mathrm{cm}^{-1} 2961 \mathrm{~m}, 1744 \mathrm{~s}, 1708 \mathrm{~s}, 1337 \mathrm{~m}, 1135 \mathrm{~m}, 538 \mathrm{~m}$. Found: C, 57.2%; H, 7.4%; N, $3.7 \% \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}$ requires C, $57.1 \% ; \mathrm{H}, 7.3 \% ; \mathrm{N}, 3.5 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.86$ (dddd, $\left.1 \mathrm{H}, J=17.1,10.7,6.0,6.0, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.25(\mathrm{dd}, 1 \mathrm{H}, J=$ 17.1, 1.5, $\mathrm{CH}_{2}=\mathrm{CH}$), 5.15 (dd, $1 \mathrm{H}, J=10.6,1.5, \mathrm{CH}_{2}=\mathrm{CH}$), 4.88 $(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.0, \mathrm{CHC}=\mathrm{O}), 4.07-4.17\left(4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.92$ ($1 \mathrm{H}, \mathrm{dd}, J=6.2,6.0, \mathrm{C} H \mathrm{~N}$), $3.47\left(\mathrm{~d}, 1 \mathrm{H}, J=14.0, \mathrm{CH}_{2} \mathrm{SO}_{2}\right.$), $3.42\left(\mathrm{~d}, 1 \mathrm{H}, J=13.7, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.79(1 \mathrm{H}, \mathrm{dd}, J=15.7,4.0$, $\mathrm{CH}_{2} \mathrm{CHO}$), 2.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.7,8.1, \mathrm{CH}_{2} \mathrm{CHO}$), $2.00-2.11$ ($2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHN}$), 1.80-1.93 (3H, Sul), $1.20-1.27$ ($2 \mathrm{H}, \mathrm{Sul} \& 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.09 (s, $3 \mathrm{H}, \mathrm{Sul}$), 0.93 (s, $3 \mathrm{H}, \mathrm{Sul}$); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8[(0), C=\mathrm{O}], 169.3$ [(0), $\left.C=\mathrm{O}\right], 133.6[(1)$, $\left.C \mathrm{H}=\mathrm{CH}_{2}\right], 118.1\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 74.9[(1), C H O], 71.7[(2)$,
$\left.C \mathrm{H}_{2} \mathrm{O}\right], 65.0[(1), C \mathrm{HN}], 60.8\left[(2), C \mathrm{H}_{2} \mathrm{O}\right], 53.0$ [(2), $\mathrm{CH}_{2} \mathrm{SO}_{2}$], 48.9 [(0), Sul], 47.8 [(0), Sul], 44.4 [(1), Sul], 38.4 [(2), Sul], 34.1 [(2), $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right], 32.7$ [(2), Sul], 26.4 [(2), Sul], 20.5 [(3), Sul], 19.8 [(3), Sul], 14.1 [(3), $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right]$. $[a]_{\mathrm{D}}^{20}-62.6$ (c 1.40 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(4S)-3-[(2R)-2-Allyloxy-2-methylpent-4-enoyl]-4-

 benzyloxazolidin-2-one (7)From 6 ($1.18 \mathrm{~g}, 4.1 \mathrm{mmol}$) and allyl iodide ($1.87 \mathrm{ml}, 20.5$ mmol), 7 ($0.45 \mathrm{~g}, 35 \%$) was obtained. MS (EI) $\mathrm{m} / \mathrm{z}(\%) 329$ (M ${ }^{+}$, <5), 270 (100), 218 (90), 157 (50), 129 (30), 91 (50). IR (film) v/cm ${ }^{-1} 3079 w, 2964 w, 2914 w, 1790 \mathrm{~s}, 1692 \mathrm{~s}, 1348 \mathrm{~m}, 1256 \mathrm{~m}$, $1182 \mathrm{~m}, 1105 \mathrm{~m}, 1004 \mathrm{~m}, ~ 917 \mathrm{~m}, 734 \mathrm{~m}$. Found: C, 69.0%; H, $7.3 \% ; \mathrm{N}, 4.1 \% \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}$ requires C, $69.3 \% ; \mathrm{H}, 7.0 \% ; \mathrm{N}, 4.3 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.15(5 \mathrm{H}, \mathrm{Ph}), 5.85$ (dddd, $1 \mathrm{H}, J=17.3,10.3,5.5,5.5, H \mathrm{C}=\mathrm{CH}_{2}$), 5.72 (dddd, $1 \mathrm{H}, J=17.3$, $10.0,7.5,7.5, H \mathrm{C}=\mathrm{CH}_{2}$), 5.22 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5,1.5$, $\left.H_{2} \mathrm{C}=\mathrm{CH}\right), 5.09$ (dddd, $\left.1 \mathrm{H}, J=17.3,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right)$, 5.08 (dddd, 1H, $J=10.5,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.04 (dddd, $\left.1 \mathrm{H}, J=10.0,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.57$ (dddd, $1 \mathrm{H}, J=10.0$, $7.0,3.5,3.5, H \mathrm{CN}$), 4.07 (dd, 1H, $J=9.0,7.0, H_{2} \mathrm{COC}=\mathrm{O}$), 4.03 (dd, $\left.1 \mathrm{H}, J=9.0,3.3, H_{2} \mathrm{COC}=\mathrm{O}\right), 3.98(\mathrm{dddd}, 1 \mathrm{H}, J=12.3,5.5$, $1.5,1.5, H_{2} \mathrm{COC}$), 3.84 (dddd, $1 \mathrm{H}, J=12.3,5.5,1.5,1.5$, $H_{2} \mathrm{COC}$), 3.23 (dd, 1H, $J=13.0,3.5, H_{2} \mathrm{CCHN}$), 3.03 (dd, 1 H , $\left.J=14.0,7.5, H_{2} \mathrm{CCO}\right), 2.71\left(\mathrm{dd}, 1 \mathrm{H}, J=14.0,7.0, H_{2} \mathrm{CCO}\right)$, 2.66 (dd, 1H, $\left.J=13.0,10.0, H_{2} \mathrm{CCHN}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{CC}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5\left[(0), \mathrm{CCCH}_{3}\right], 151.4[(0)$, CO], 135.4 [(0$), \mathrm{Ph}$], 134.6, 132.7 [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 129.3, 128.8, 127.2 [(1), Ph], 118.7, 116.5 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 82.7$ [(0), $\left.\mathrm{CCH}_{3}\right]$, 66.1, 65.4 [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 57.5$ [(1), CHN$], 40.5,37.8$ [(2), $\mathrm{CH}_{2} \mathrm{C}$], $20.8\left[(3), \mathrm{CH}_{3}\right] \cdot[a]_{\mathrm{D}}^{20}+38.4\left(c 1.13\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(4S)-3-[(2R)-2-Methyl-3,6-diyhdro-2H-pyran-2-ylmethanoyl]-4-benzyloxazolidin-2-one (8)

From $7(0.94 \mathrm{~g}, 2.8 \mathrm{mmol})$ and Grubbs' catalyst (70 mg , $3 \mathrm{~mol} \%) 8(0.68 \mathrm{~g}, 80 \%)$ was obtained. MS (EI) $\mathrm{m} / \mathrm{z}(\%) 302$ $\left(\mathrm{M}^{+}+1,60\right), 97$ (100). IR (film) $v / \mathrm{cm}^{-1} 2926 \mathrm{~m}, 1789 \mathrm{~s}, 1349 \mathrm{~m}$, $1190 \mathrm{~s}, 1093 \mathrm{~s}, 703 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.24$ ($2 \mathrm{H}, \mathrm{Ph}$), 7.21 (m, 1H, Ph), 7.17-7.13 (2H, Ph); 5.79 (dm, 1H, $J=10.5, \mathrm{HC=C} H), 5.66(\mathrm{dm}, 1 \mathrm{H}, J=10.5, \mathrm{HC=C} H), 4.60$ (dddd, $1 \mathrm{H}, J=10.0,9.0,3.0,3.0, H \mathrm{CN}), 4.39(\mathrm{dm}, 1 \mathrm{H}, J=17.0$, HHCO), 4.22 (dm, 1H, $J=17.0, \mathrm{H} H \mathrm{CO}), 4.13$ (dd, 1H, $J=9.0$, $\left.9.0, H_{2} \mathrm{COC}=\mathrm{O}\right), 4.08\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,3.0, H_{2} \mathrm{COC}=\mathrm{O}\right), 3.26$ (dd, $\left.1 \mathrm{H}, J=13.3,3.0, H_{2} \mathrm{CCHN}\right), 2.88(\mathrm{dm}, 1 \mathrm{H}, J=17.5$, $H \mathrm{HCCH}=), 2.68\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,10.0, H_{2} \mathrm{CCHN}\right), 2.19(\mathrm{dm}$, $1 \mathrm{H}, J=17.5, H \mathrm{HCCH}=), 1.61\left(3 \mathrm{H}, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.5\left[(0), \mathrm{CCH}_{3}\right], 151.8[(0), \mathrm{CO}], 135.3[(0), \mathrm{Ph}]$, 129.3, 128.9, 127.3 [(1), Ph], 125.0, 122.0 [(1), HC=CH], 76.8 [$\left.(0), \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right], 66.4,62.4\left[(2), \mathrm{CH}_{2} \mathrm{O}\right], 57.4[(1), \mathrm{CHN}], 37.8$ [(2), $\left.\left.\mathrm{CH}_{2} \mathrm{CHN}\right)\right], 31.9$ [(2), $\left.\mathrm{HHCCH}=\right], 22.2$ [(3), $\left.\mathrm{CH}_{3}\right] .[a]_{\mathrm{D}}^{20}$ +42.7 (c 1.45 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Attempted allylation of acylated oxazolidinone 6b

From 6b ($1.80 \mathrm{~g}, 5.9 \mathrm{mmol}$) and allyl iodide ($2.71 \mathrm{ml}, 29.7$ mmol) only allyl benzoate $9(0.50 \mathrm{~g}, 47 \%)$ was obtained. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.03(2 \mathrm{H}, \mathrm{Ph}), 7.55(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ph}), 7.45-7.40$ ($2 \mathrm{H}, \mathrm{Ph}$), 6.03 (dddd, $1 \mathrm{H}, J=17.1,10.5,5.8,5.5$, $H \mathrm{C}=\mathrm{CH}_{2}$), $5.40\left(\right.$ dddd, $\left.1 \mathrm{H}, J=17.1,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right)$, 5.27 (dddd, $1 \mathrm{H}, J=10.5,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 4.84 (dddd, $\left.1 \mathrm{H}, J=19.8,5.8,1.5,1.5, H_{2} \mathrm{CO}\right), 4.79$ (dddd, $1 \mathrm{H}, J=19.8,5.5$, $\left.1.5,1.5, \mathrm{H}_{2} \mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2[(0)$, $C=\mathrm{O}$], 133.0, 132.2 [(1), $\mathrm{Ph} / \mathrm{CH}=\mathrm{CH}_{2}$], 130.1 [(0), Ph$], 129.6$, $128.3\left[(1), \mathrm{Ph} / \mathrm{CH}=\mathrm{CH}_{2}\right], 118.2\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 65.2$ [(2), $\mathrm{CH}_{2} \mathrm{O}$].

General procedure for the preparation of diallylcarbinols

A solution of allylmagnesium bromide (1.0 M solution in ether, $7.6 \mathrm{ml}, 7.6 \mathrm{mmol}$) was added to a solution of the corresponding oxazolidinone 2 or bornane sultam $4(1.90 \mathrm{mmol})$ in ether
$(5 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. When the reaction was complete as indicated by TLC, the mixture was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted. After evaporation, the residue was purified by flash chromatography on silica to give the corresponding S or R-configured diallylcarbinols, along with the free oxazolidinone or bornane sultam, respectively.

(R)-4-Allyl-5-methylocta-1,7-dien-4-ol (10a)

From $\mathbf{2 a}(4.21 \mathrm{~g}, 15.4 \mathrm{mmol}) \mathbf{1 0 a}(1.94 \mathrm{~g}, 70 \%)$ was obtained. MS (EI) $m / z(\%) 179\left(\mathrm{M}^{+}-1,<5\right), 139(100), 69$ (40). IR (film): $v / \mathrm{cm}^{-1} 3485 \mathrm{br}$ m, 3076s, 2977s, 2937s, 1640s, 1383m, 996s, 911 s . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92-5.81\left(2 \mathrm{H}, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.70$ (ddm, 1H, $\left.J=17.3,10.3, H C=\mathrm{CH}_{2}\right), 5.13(\mathrm{dm}, 1 \mathrm{H}, J=10.3$, $\left.H_{2} \mathrm{C}=\mathrm{CH}\right), 5.13\left(\mathrm{dm}, 1 \mathrm{H}, J=10.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.09(\mathrm{dm}, 1 \mathrm{H}, J=$ 17.8, $H_{2} \mathrm{C}=\mathrm{CH}$), $5.09\left(\mathrm{dm}, 1 \mathrm{H}, J=17.8, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.00(\mathrm{dm}$, $1 \mathrm{H}, J=17.3, H_{2} \mathrm{C}=\mathrm{CH}$), $4.97\left(\mathrm{dm}, 1 \mathrm{H}, J=10.8, H_{2} \mathrm{C}=\mathrm{CH}\right), 2.43$ $\left(\mathrm{m}, 1 \mathrm{H}, H_{2} \mathrm{C}\right), 2.32-2.25\left(2 \mathrm{H}, H_{2} \mathrm{C}\right), 2.23-2.17\left(2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}\right), 1.76$ (dm, 1H, J=13.3, $H_{2} \mathrm{C}$), $1.64\left(\mathrm{dqm}, 1 \mathrm{H}, J=7.0,2.8, H_{C C H}^{3}\right)$, 1.57 (br s, $1 \mathrm{H}, \mathrm{HO}$), $0.89\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.2,133.9,133.8\left[(1), C \mathrm{H}=\mathrm{CH}_{2}\right], 118.6$, 118.6, 115.7 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 75.4[(0), \mathrm{COH}], 41.4,40.6[(2)$, $\left.\mathrm{CH}_{2}\right], 40.1\left[(1), \mathrm{CHCH}_{3}\right], 35.5\left[(2), \mathrm{CH}_{2}\right], 13.6\left[(3), \mathrm{CH}_{3}\right] .+4.3$ (c 1.20 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(R)-4-Allyl-2-benzylhex-5-en-3-ol (10b)

From $\mathbf{2 b}(0.53 \mathrm{~g}, 1.6 \mathrm{mmol}) \mathbf{1 0 b}(0.31 \mathrm{~g}, 82 \%)$ was obtained. MS (EI) $m / z(\%) 231\left(\mathrm{M}^{+}+1,<5\right), 189$ (100), 171 (70), 119 (80), 91 (25). IR (film): $v / \mathrm{cm}^{-1} 3476 \mathrm{br} \mathrm{m}, 2976 \mathrm{~s}, 2937 \mathrm{~s}, 1639 \mathrm{~m}, 999 \mathrm{~s}$, 914s, 711s. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(2 \mathrm{H}, \mathrm{Ph})$, 7.21-7.16 ($3 \mathrm{H}, \mathrm{Ph}$), 6.02-5.89 $\left(2 \mathrm{H}, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.22(\mathrm{dm}, 1 \mathrm{H}$, $\left.J=10.0, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.20\left(\mathrm{dm}, 1 \mathrm{H}, J=17.1, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.18$ (dm, 1H, $\left.J=10.0, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.17\left(\mathrm{dm}, 1 \mathrm{H}, J=17.0, H_{2} \mathrm{C}=\mathrm{CH}\right)$, $3.12\left(\mathrm{dd}, 1 \mathrm{H}, J=13.0,2.5, H_{2} \mathrm{CPh}\right), 2.41(\mathrm{dm}, 2 \mathrm{H}, J=14.0$, $H_{2} \mathrm{C}$), 2.33 (dd, $\left.2 \mathrm{H}, J=14.0,7.5, H_{2} \mathrm{C}\right), 2.19(\mathrm{dd}, 1 \mathrm{H}, J=13.0$, $\left.11.3, H_{2} \mathrm{CPh}\right), 1.89\left(\mathrm{dqd}, 1 \mathrm{H}, J=11.3,7.0,2.5, H \mathrm{CCH}_{3}\right), 1.67$ (br s, $1 \mathrm{H}, H \mathrm{O}$), $0.84\left(\mathrm{~d}, 1 \mathrm{H}, J=7.0, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.8[(0), \mathrm{Ph}], 133.9,133.7\left[(1), C H=\mathrm{CH}_{2}\right], 129.1$, 128.2, 125.7 [(1), Ph$], 118.8,118.7$ [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 75.3$ [(0), $\mathrm{COH}], 42.8\left[(1), \mathrm{CHCH}_{3}\right], 41.3,40.8,37.2\left[(2), \mathrm{CH}_{2}\right], 13.2[(3)$, $\left.C \mathrm{H}_{3}\right] \cdot[a]_{\mathrm{D}}^{22}-2.5\left(c 1.70\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R)-4-Allyl-5-allyloxyocta-1,7-dien-4-ol (10c)

From $2 \mathrm{c}(0.60 \mathrm{~g}, 1.9 \mathrm{mmol}) \mathbf{1 0 c}(0.32 \mathrm{~g}, 76 \%)$ was obtained. MS (EI) $m / z(\%) 221\left(\mathrm{M}^{+}-1,<5\right), 205(100), 177$ (40), 149 (20), 91 (20). IR (film) $v / \mathrm{cm}^{-1} 3483 \mathrm{br} w, 3078 \mathrm{~m}, 2926 \mathrm{~m}, 1640 \mathrm{~m}, 1261 \mathrm{~m}$, $1087 \mathrm{~m}, 998 \mathrm{~m}, 925 \mathrm{~s}, 804 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.95-$ $5.81\left(4 \mathrm{H}, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.23$ (dddd, $1 \mathrm{H}, J=17.3,1.8,1.8,1.8$, $\left.H_{2} \mathrm{C}=\mathrm{CH}\right), 5.14-5.03\left(6 \mathrm{H}, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.02(\mathrm{dm}, 1 \mathrm{H}, J=10.3$, $H_{2} \mathrm{C}=\mathrm{CH}$), 4.18 (dddd, $1 \mathrm{H}, J=12.5,5.3,1.5,1.5, H_{2} \mathrm{CO}$), 3.97 (dddd, $\left.1 \mathrm{H}, J=12.5,5.8,1.5,1.5, H_{2} \mathrm{CO}\right), 3.29$ (dd, $1 \mathrm{H}, J=8.0$, $3.5, H \mathrm{CO}), 2.43-2.29\left(3 \mathrm{H}, H_{2} \mathrm{C}\right), 2.31(\mathrm{ddm}, 1 \mathrm{H}, J=13.5,7.0$, $H_{2} \mathrm{C}$), 2.27 (br s, $1 \mathrm{H}, H \mathrm{O}$), $2.24\left(\mathrm{ddm}, 1 \mathrm{H}, J=14.3,7.5, H_{2} \mathrm{C}\right.$), $2.12\left(\mathrm{dd}, 1 \mathrm{H}, J=14.3,8.0, \mathrm{H}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,134.8,133.9,133.7\left[(1), C H=\mathrm{CH}_{2}\right], 118.3,118.0,116.7$, $116.4\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 83.4[(1), \mathrm{CHO}], 75.7[(0), \mathrm{COH}], 73.0$ [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 40.8,40.0,34.9$ [(2), $\left.C \mathrm{H}_{2}\right]$. [a] $]_{\mathrm{D}}^{22}-28.3$ (c 1.25 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(R)-4-(3,6-Dihydro-2H-pyran-2-yl)hepta-1,6-dien-4-ol (10d)

From $2 \mathbf{d}(0.96 \mathrm{~g}, 3.3 \mathrm{mmol}) \mathbf{1 0 d}(0.38 \mathrm{~g}, 63 \%)$ was obtained. MS (EI) $m / z(\%) 195\left(\mathrm{M}^{+}+1,<5\right), 177(90), 55$ (100). IR (film): $v / \mathrm{cm}^{-1} 3440 \mathrm{~s}, 2937 \mathrm{~s}, 1648 \mathrm{~m}, 915 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.92-5.78\left(3 \mathrm{H}, \mathrm{HC}=\mathrm{CH}_{2}\right), 5.68(\mathrm{dm}, 1 \mathrm{H}, J=10.0$, $H \mathrm{C}=$), $5.15-5.03\left(4 \mathrm{H}, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.22(\mathrm{~d}, 1 \mathrm{H}, J=16.2$, OCHH), 4.15 (d, 1H, $J=16.2$, OCHH), $3.40(\mathrm{dd}, 1 \mathrm{H}, J=10.7$, 3.0, HCO), 2.40-2.18 (5H, CH2, OH), 2.09 (dd, $1 \mathrm{H}, J=14.2$, 8.2, CH_{2}), $1.91\left(\mathrm{dm}, 1 \mathrm{H}, J=17.0, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 133.6,133.5,125.9,124.4\left[(1), C \mathrm{H}=\mathrm{CH}_{2}\right], 118.3,118.0$
[(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 76.8$ [(1), CHO$], 74.6$ [(0), COH$], 66.4$ [(2), $\left.C \mathrm{H}_{2} \mathrm{O}\right], 40.4,39.0,24.5\left[(2), C \mathrm{H}_{2}\right] \cdot[a]_{\mathrm{D}}^{2}+14.5$ (c 1.00 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(S)-4-Allyl-5-methylocta-1,7-dien-4-ol (12a)

From 4a ($1.50 \mathrm{~g}, 4.8 \mathrm{mmol}$) 12a ($0.73 \mathrm{~g}, 83 \%$) was obtained. Spectroscopic data are identical to those observed for the enantiomer (10a). $[\alpha]_{\mathrm{D}}^{22}-3.2$ ($c 1.00$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(\boldsymbol{S})-4-Allyl-5-benzylocta-1,7-dien-4-ol (12b)

From $\mathbf{4 b}(0.50 \mathrm{~g}, 1.3 \mathrm{mmol}) \mathbf{1 2 b}(0.22 \mathrm{~g}, 64 \%)$ was obtained. MS (EI) $m / z(\%) 256\left(\mathrm{M}^{+}, 40\right), 244(90), 216(90), 135(100), 93(50)$, 57 (50). IR (film): $v / \mathrm{cm}^{-1} 3480 \mathrm{br} \mathrm{m}, 3079 \mathrm{~m}, 2934 \mathrm{~s}, 1643 \mathrm{~s}, 925 \mathrm{~s}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.22(2 \mathrm{H}, \mathrm{Ph}), 7.19-7.14$ (3H, Ph), 5.96-5.84 ($2 \mathrm{H}, H \mathrm{C}=\mathrm{CH}_{2}$), 5.71 (dddd, $1 \mathrm{H}, J=17.1$, $\left.10.0,7.0,7.0, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.17\left(\mathrm{dm}, 1 \mathrm{H}, J=17.1, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.12$ (dm, $\left.1 \mathrm{H}, J=10.0, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.12\left(\mathrm{dm}, 1 \mathrm{H}, J=17.1, H_{2} \mathrm{C}=\mathrm{CH}\right)$, $5.10\left(\mathrm{dm}, 1 \mathrm{H}, J=10.0, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.94(\mathrm{ddm}, 1 \mathrm{H}, J=17.1,1.5$, $H_{2} \mathrm{C}=\mathrm{CH}$), $4.90\left(\mathrm{dm}, 1 \mathrm{H}, J=10.0, H_{2} \mathrm{C}=\mathrm{CH}\right), 2.98(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.13.8,3.8, H_{2} \mathrm{CPh}\right), 2.44$ (dd, $\left.1 \mathrm{H}, J=14.1,9.8, H_{2} \mathrm{C}\right), 2.39$ (dd, $2 \mathrm{H}, J=14.1,7.3, H_{2} \mathrm{C}$), 2.34-2.23 (3H, $\left.\mathrm{HCCOH}, H_{2} \mathrm{C}\right), 2.08$ $\left(\mathrm{dm}, 1 \mathrm{H}, J=14.3, H_{2} \mathrm{C}\right), 1.98\left(\mathrm{dm}, 1 \mathrm{H}, J=14.3, H_{2} \mathrm{C}\right), 1.73(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{HO}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.6$ [(0), Ph], 138.4, 133.9, 133.8 [(1), $\left.\mathrm{CH}=\mathrm{CH}_{2}\right], 129.2,128.3,125.8[(1), \mathrm{Ph}]$, $118.7,118.6,115.8$ [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 76.2$ [(0), COH$], 47.3$ [(1), $C \mathrm{HCOH}], 41.8,41.5,35.4,33.7$ [(2), $\left.\mathrm{CH}_{2}\right] \cdot[a]_{\mathrm{D}}^{21}-7.1$ (c 1.30 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(S)-4-Allyl-5-methoxyocta-1,7-dien-4-ol (12c)

From $\mathbf{4 c}(0.59 \mathrm{~g}, 1.8 \mathrm{mmol}) \mathbf{1 2 c}(0.30 \mathrm{~g}, 85 \%)$ was obtained. MS (EI) $m / z(\%) 195\left(\mathrm{M}^{+}-1,<5\right), 179$ (20), 147 (40), 137 (50), 85 (100). IR (film) $\nu / \mathrm{cm}^{-1} 3480 \mathrm{br} \mathrm{m}, 2978 \mathrm{~m}, 2935 \mathrm{~m}, 1639 \mathrm{~m}$, $1437 \mathrm{~m}, 1098 \mathrm{~s}, 914 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.95-5.80$ $\left(3 \mathrm{H}, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.13-5.07\left(4 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.06(\mathrm{dm}, 1 \mathrm{H}, J=$ 17.8, $\left.H_{2} \mathrm{C}=\mathrm{CH}\right), 5.03\left(\mathrm{dm}, 1 \mathrm{H}, J=17.0, H_{2} \mathrm{C}=\mathrm{CH}\right), 3.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.H_{3} \mathrm{C}\right), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=8.3,3.5, H \mathrm{CO}), 2.41-2.32\left(3 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}\right)$, $2.27\left(\mathrm{dm}, 1 \mathrm{H}, J=9.0, H_{2} \mathrm{C}\right), 2.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, H \mathrm{O}), 2.21(\mathrm{dm}, 1 \mathrm{H}$, $\left.J=8.3, H_{2} \mathrm{C}\right), 2.10\left(\mathrm{dd}, 1 \mathrm{H}, J=14.1,8.3, H_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 136.1, 133.9, $133.6\left[(1), C \mathrm{H}=\mathrm{CH}_{2}\right], 118.3$, 118.0, $116.6\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 85.1[(1), C \mathrm{HO}], 75.8$ [(0), COH$]$, $60.0\left[(2), \mathrm{CH}_{3} \mathrm{O}\right], 40.7,39.9,34.6$ [(2), $\left.\mathrm{CH}_{2}\right] \cdot[a]_{\mathrm{D}}^{22}+23.3(c 1.25$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(S)-4-Allyl-5-allyloxyocta-1,7-dien-4-ol (12e)

From $4 \mathrm{e}(0.50 \mathrm{~g}, 1.3 \mathrm{mmol})$ 12e ($0.29 \mathrm{~g}, 96 \%$) was obtained. Spectroscopic data are identical to those observed for the enantiomer (10c). $[a]_{\mathrm{D}}^{20}+30.3\left(c 1.45\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Preparation of divinylcarbinols

Procedure A. A solution of vinylmagnesium chloride (1.7 M solution in THF, $1.85 \mathrm{ml}, 3.2 \mathrm{mmol}$) was added to a solution of the corresponding oxazolidinone 2 or bornane sultam 4 $(1.50 \mathrm{mmol})$ in ether $(15 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. When the reaction was complete as indicated by TLC, the mixture was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted. After evaporation, the residue was purified by flash chromatography on silica to give the corresponding S - or R-configured divinylcarbinols, along with a butenone by-product. When oxazolidinones 2a,b and 8a were used, acrylates $\mathbf{1 6 a}, \mathrm{b}$ and $\mathbf{1 7}$ were formed exclusively.

Procedure B. The vinylcerium reagent was prepared from $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(2.73 \mathrm{~g}, 7.3 \mathrm{mmol})$ and vinylmagnesium chloride (1.7 M solution in THF, $3.77 \mathrm{ml}, 6.4 \mathrm{mmol}$) as described by Lautens et al. ${ }^{36}$ Acylated oxazolidinones $\mathbf{2}$ or bornane sultams $\mathbf{4}$ $(1.8 \mathrm{mmol})$ were added in dry, degassed THF $(22 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred until the starting material was fully consumed, as indicated by TLC. Water (30 ml) was added dropwise and the minimum amount of hydrochloric acid (1M)
was added to ensure solution of inorganic precipitates. The aqueous layer was extracted and the combined organic extracts were dried with MgSO_{4}, filtered and evaporated. The resulting divinylcarbinols were easily separated from the oxazolidinone 11 or bornane sultam $\mathbf{1 3}$, respectively, by flash chromatography on silica. When oxazolidinones $\mathbf{2 a}, \mathbf{b}$ were used, acrylates $\mathbf{1 6 a}, \mathbf{b}$ were formed exclusively.

(S)-2-[(R)-2-Methylpent-4-enamido]-3-phenylpropyl acrylate (16a)

Following procedure A, from 2a $(0.80 \mathrm{~g}, 2.9 \mathrm{mmol}) \mathbf{1 6 a}(0.53 \mathrm{~g}$, 60%) was obtained. Following procedure B, from 2a (0.80 g , $2.9 \mathrm{mmol}) \mathbf{1 6 a}(0.50 \mathrm{~g}, 57 \%)$ was obtained. Mp $107^{\circ} \mathrm{C}$. MS (EI, $70 \mathrm{eV}): m / z(\%)=302\left(\mathrm{M}^{+}+1,100\right), 230(20), 138(40), 114$ (30), 91 (30), 69 (65), 55 (70). IR (disk, KBr): $v / \mathrm{cm}^{-1} 3287 \mathrm{~s}$, 2965w, 1725s, 1648s, 1552m, 1299m, 1211m, 700m. Found: C, $71.7 \% ; \mathrm{H}, 7.6 \% ; \mathrm{N}, 4.6 \% . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 71.7 \% ; \mathrm{H}$, 7.7%; $\mathrm{N}, 4.7 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.12(5 \mathrm{H}$, $\mathrm{Ph}), 6.37\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 6.08(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.17.3,10.3, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.82\left(\mathrm{dd}, 1 \mathrm{H}, J=10.3,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right)$, 5.60-5.52 (m, 2H, HN, HC= CH_{2}), 4.94 (dddd, $1 \mathrm{H}, J=17.3,1.8$, $\left.1.8,1.8, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.90\left(\right.$ dddd, $1 \mathrm{H}, J=10.3,1.8,1.8,1.8, H_{2} \mathrm{C}=$ $\mathrm{CH}), 4.42(\mathrm{~m}, 1 \mathrm{H}, H \mathrm{CN}), 4.13\left(\mathrm{dd}, 1 \mathrm{H}, J=11.5,5.8, H_{2} \mathrm{CO}\right)$, $4.05\left(\mathrm{dd}, 1 \mathrm{H}, J=11.5,4.5, H_{2} \mathrm{CO}\right), 2.83(\mathrm{dd}, 1 \mathrm{H}, J=13.8,6.5$, $\left.H_{2} \mathrm{CPh}\right), 2.75\left(\mathrm{dd}, 1 \mathrm{H}, J=13.8,7.8, H_{2} \mathrm{CPh}\right), 2.23(\mathrm{ddm}, 1 \mathrm{H}, J=$ 13.8, 7.3, $\left.H_{2} \mathrm{CCHCH}_{3}\right), 2.12\left(\mathrm{dm}, 1 \mathrm{H}, J=6.8, H C C H_{3}\right), 2.00$ $\left(\mathrm{ddm}, 1 \mathrm{H}, J=13.8,6.3, H_{2} \mathrm{CCHCH}_{3}\right), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=6.8$, $\left.H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,166.2[(0), C=\mathrm{O}]$, 136.9 [(0), Ph], 135.7 [(1), $C \mathrm{H}=\mathrm{CH}_{2}$], 131.6 [(2), $C \mathrm{H}_{2}=\mathrm{CH}$], 129.2, 128.6, 127.9, 126.8, [(1), $\left.\mathrm{Ph}, \mathrm{CH}=\mathrm{CH}_{2}\right], 116.8\left[(2), \mathrm{CH}_{2}=\right.$ $\mathrm{CH}], 64.9\left[(2), \mathrm{CH}_{2} \mathrm{O}\right], 49.4$ [(1), $\left.C \mathrm{HN}\right], 41.3$ [(1), $\left.C \mathrm{HCH}_{3}\right]$, $38.2,37.6\left[(2), C \mathrm{H}_{2}\right], 17.3\left[(3), C \mathrm{H}_{3}\right] .[\alpha]_{\mathrm{D}}^{22}-28.9$ (c 1.40 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(S)-2-[(R)-2-Methyl-3-phenylpropanamido]-3-phenylpropyl acrylate (16b)

Following procedure A , from $\mathbf{2 b}(0.56 \mathrm{~g}, 1.5 \mathrm{mmol}) \mathbf{1 6 b}(0.43 \mathrm{~g}$ 70%) was obtained. Following procedure B, from $2 \mathrm{~b}(0.56 \mathrm{~g}$, $1.5 \mathrm{mmol}) \mathbf{1 6 b}(0.41 \mathrm{~g}, 67 \%)$ was obtained. $\mathrm{Mp} 89^{\circ} \mathrm{C}$. MS (EI) $m / z(\%) 352\left(\mathrm{M}^{+}+1,40\right), 280(30), 188(60), 119(30), 91$ (100), 55 (50). IR (disk, KBr) $v / \mathrm{cm}^{-1} 3298 \mathrm{~s}, 2964 \mathrm{w}, 1726 \mathrm{~s}, 1648 \mathrm{~s}$, $1545 \mathrm{~m}, 1409 \mathrm{~m}, 1300 \mathrm{~m}, 1216 \mathrm{~m}, 703 \mathrm{~s}$. Found: C, $74.5 \% ; \mathrm{H}$, $7.2 \% ; \mathrm{N}, 3.9 \% . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 75.1 \% ; \mathrm{H}, 7.2 \% ; \mathrm{N}$, $4.0 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.08(8 \mathrm{H}, \mathrm{Ph}), 6.94$ $6.90(2 \mathrm{H}, \mathrm{Ph}), 6.31\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,1.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 6.02(\mathrm{dd}$, $\left.1 \mathrm{H}, J=17.3,10.3, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.79\left(\mathrm{dd}, 1 \mathrm{H}, J=10.3,1.3, H_{2} \mathrm{C}=\right.$ $\mathrm{CH}), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=8.3, H \mathrm{~N}), 4.33(\mathrm{~m}, 1 \mathrm{H}, H \mathrm{CN}), 3.99(\mathrm{dd}$, $\left.1 \mathrm{H}, J=11.5,6.0, H_{2} \mathrm{CO}\right), 4.96\left(\mathrm{dd}, 1 \mathrm{H}, J=11.5,4.3, H_{2} \mathrm{CO}\right)$, 2.83 (dd, $\left.1 \mathrm{H}, J=13.8,8.8, H_{2} \mathrm{CPh}\right), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=13.8,5.3$, $\left.H_{2} \mathrm{CPh}\right), 2.57\left(\mathrm{dd}, 1 \mathrm{H}, J=13.8,6.3, H_{2} \mathrm{CPh}\right), 2.45(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.13.8,8.0, H_{2} \mathrm{CPh}\right), 2.31\left(\mathrm{dm}, 1 \mathrm{H}, J=7.0, H \mathrm{CCH}_{3}\right), 1.07(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=7.0, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1,166.1[(0)$, $C=\mathrm{O}], 139.8,136.7[(0), \mathrm{Ph}], 131.5\left[(2), \mathrm{CH}_{2}=\mathrm{CH}\right], 129.2,129.0$, 128.6, 128.4, 127.8, 126.7, 126.3, [(1), $\left.\mathrm{Ph}, \mathrm{CH}=\mathrm{CH}_{2}\right], 64.4$ [(2), $\mathrm{CH}_{2} \mathrm{O}$], 49.6 [(1), CHN$], 44.0$ [(1), CHCH_{3}], 40.4, 37.2 [(2), $\left.C \mathrm{H}_{2}\right], 17.7\left[(3), \mathrm{CH}_{3}\right] .[a]_{\mathrm{D}}^{22}-39.5\left(c 1.06\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Attempted cleavage of oxazolidinone 2c

Following procedure A , from $\mathbf{2 c}(0.47 \mathrm{~g}, 1.5 \mathrm{mmol})$ an inseparable $1.5: 1: 1$ mixture of $\mathbf{1 4 c}, \mathbf{1 5 c}$ and $\mathbf{1 6 c}$ was obtained, along with the oxazolidinone 11. Following procedure B, from $\mathbf{2 c}$ $(0.80 \mathrm{~g}, 2.5 \mathrm{mmol})$ only the R-configured divinylcarbinol $\mathbf{1 4 c}$ ($0.19 \mathrm{~g}, 40 \%$) was obtained. Spectroscopic data were identical to those observed for 12e. $[\alpha]_{\mathrm{D}}^{22}+13.3\left(c 1.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(S)-2-\{1-[(S)-2-Methyl-3,6-dihydro-2H-pyran-2-yl]methanoyl-amino\}-3-phenylpropyl acrylate (17)

Following procedure A , from $\mathbf{8 a}(0.39 \mathrm{~g}, 1.3 \mathrm{mmol}) \mathbf{1 7}(0.17 \mathrm{~g}$,
40%) was obtained. $\mathrm{Mp} 79{ }^{\circ} \mathrm{C} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%) 329\left(\mathrm{M}^{+},<5\right)$, 301 (20), 238 (40), 166 (70), 97 (100). IR (disk, KBr): v / cm^{-1} $3353 \mathrm{~m}, ~ 2844 \mathrm{w}, ~ 1720 \mathrm{~s}, 1648 \mathrm{~s}, 1408 \mathrm{~m}, 1300 \mathrm{~m}, 1079 \mathrm{~s}, ~ 811 \mathrm{~m}$, $703 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.26(2 \mathrm{H}, \mathrm{Ph}), 7.23-$ $7.18(3 \mathrm{H}, \mathrm{Ph}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=8.8, H \mathrm{~N}), 6.43(\mathrm{dd}, 1 \mathrm{H}, J=17.5$, $\left.1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 6.16\left(\mathrm{dd}, 1 \mathrm{H}, J=17.5,10.5, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.87(\mathrm{dd}$, $\left.1 \mathrm{H}, J=10.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.76(\mathrm{dm}, 1 \mathrm{H}, J=10.5, \mathrm{CH}=\mathrm{CH})$, $5.63(\mathrm{dm}, 1 \mathrm{H}, J=10.5, \mathrm{C} H=\mathrm{CH}), 4.58(\mathrm{~m}, 1 \mathrm{H}, H \mathrm{CN}), 4.20-$ $4.13\left(3 \mathrm{H}, H_{2} \mathrm{CO}, \mathrm{H} H \mathrm{CO}\right), 4.09(\mathrm{dm}, 1 \mathrm{H}, J=16.5, H 6), 2.88(\mathrm{~d}$, $\left.2 \mathrm{H}, J=7.3, H_{2} \mathrm{CPh}\right), 2.32(\mathrm{dm}, 1 \mathrm{H}, J=17.5, \mathrm{H} H \mathrm{CCH}=), 2.08$ $(\mathrm{dm}, 1 \mathrm{H}, J=17.5, \mathrm{H} H \mathrm{CCH}=), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 174.6, 165.9 [(0), $\left.\mathrm{C}=\mathrm{O}\right], 137.0[(0), \mathrm{Ph}]$, $131.4\left[(2), C \mathrm{H}_{2}=\mathrm{CH}\right], 129.2,128.6,128.0,126.7,124.3,122,7$ [(1), $\left.\mathrm{Ph}, C \mathrm{H}=\mathrm{CH}, C \mathrm{H}=\mathrm{CH}_{2}\right], 74.6\left[(0), C\left(\mathrm{CH}_{3}\right) \mathrm{O}\right], 64.9,61.7$ $\left[(2), C \mathrm{H}_{2} \mathrm{O}\right], 48.8[(1), C \mathrm{HN}], 37.6,31.8\left[(2), C \mathrm{H}_{2} \mathrm{Ph}\right.$, $\mathrm{HHCCH}=], 21.7\left[(3), C \mathrm{H}_{3}\right] .\left[a\left[{ }_{\mathrm{D}}^{22}-51.2\left(c 0.86\right.\right.\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(4S)-4-Methoxy-3-vinylhepta-1,6-dien-3-ol (18c)

Following procedure B , from $4 \mathrm{c}(0.66 \mathrm{~g}, 2.0 \mathrm{mmol}) 0.24 \mathrm{~g}(70 \%)$ of $\mathbf{1 8 c}$ were obtained. MS (EI) $m / z(\%) 167\left(\mathrm{M}^{+}-1,<5\right), 151$ (40), 119 (95), 85 (100), 55 (45). IR (film) $\mathrm{v} / \mathrm{cm}^{-1} 3479 \mathrm{br} \mathrm{m}$, $2933 \mathrm{~m}, 1413 \mathrm{w}, 1102 \mathrm{~s}, 922 \mathrm{~s}, 799 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.98\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,10.8, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.95(\mathrm{dd}, 1 \mathrm{H}, J=17.3$, $\left.10.8, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.86($ dddd, $1 \mathrm{H}, J=17.3,10.3,7.0,7.0, H \mathrm{C}=$ $\left.\mathrm{CH}_{2}\right), 5.34\left(\mathrm{dm}, 1 \mathrm{H}, J=17.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.34(\mathrm{dm}, 1 \mathrm{H}, J=17.3$, $\left.H_{2} \mathrm{C}=\mathrm{CH}\right), 5.17\left(\mathrm{dm}, 1 \mathrm{H}, J=17.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.17(\mathrm{dm}, 1 \mathrm{H}, J=$ $10.8, H_{2} \mathrm{C}=\mathrm{CH}$), 5.07 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5,1.5, H_{2} \mathrm{C}=$ CH), 5.01 (dddd, $1 \mathrm{H}, J=10.3,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 3.41 (s, $\left.3 \mathrm{H}, H_{3} \mathrm{CO}\right), 3.14(\mathrm{dd}, 1 \mathrm{H}, J=7.5,3.8, H \mathrm{CO}), 2.40-2.32$ $\left(2 \mathrm{H}, \mathrm{HO}, \mathrm{H}_{2} \mathrm{CCH}=\mathrm{CH}_{2}\right), 2.21\left(\mathrm{dm}, 1 \mathrm{H}, J=14.8, \mathrm{H}_{2} \mathrm{CCH}=\right.$ $\left.\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.0,139.0,135.9$ [(1), $C \mathrm{H}=\mathrm{CH}_{2}$], 116.7, 114.5, 114.5 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 86.7$ [(1), CHO$]$, $78.1[(0), \mathrm{COH}], 60.3\left[(3), \mathrm{CH}_{3} \mathrm{O}\right], 35.0\left[(2), \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right]$. $[a]_{\mathrm{D}}^{23}-10.7\left(c 1.52\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(4S)-4-Methoxy-5-phenyl-3-vinylpent-1-en-3-ol (18d)

Following procedure B, from $\mathbf{4 d}(0.67 \mathrm{~g}, 2.0 \mathrm{mmol}) \mathbf{1 8 d}(0.28 \mathrm{~g}$, 73%) was obtained. MS (EI) $m / z(\%) 217\left(\mathrm{M}^{+}-1,<5\right), 169$ (100). IR (film): $v / \mathrm{cm}^{-1} 3470 \mathrm{br} \mathrm{m}, 2931 \mathrm{~s}, 1496 \mathrm{~m}, 1454 \mathrm{~m}, 1105 \mathrm{~s}$, $924 \mathrm{~m}, 700 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.19(5 \mathrm{H}, \mathrm{Ph})$, $6.08\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,10.8, H \mathrm{C}=\mathrm{CH}_{2}\right), 6.05(\mathrm{dd}, 1 \mathrm{H}, J=17.3$, $\left.10.8, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.43\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.42(\mathrm{dd}$, $\left.1 \mathrm{H}, J=17.3,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.26\left(\mathrm{dd}, 1 \mathrm{H}, J=10.8,1.5, H_{2} \mathrm{C}=\right.$ CH), 5.24 (dd, $\left.1 \mathrm{H}, J=10.8,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 3.32(\mathrm{dd}, 1 \mathrm{H}, J=$ $9.8,2.8, H \mathrm{CO}), 3.10\left(\mathrm{~s}, 3 \mathrm{H}, H_{3} \mathrm{CO}\right), 2.94(\mathrm{dd}, 1 \mathrm{H}, J=14.3,2.8$, $\left.H_{2} \mathrm{CPh}\right), 2.67\left(\mathrm{dd}, 1 \mathrm{H}, J=14.3,9.8, H_{2} \mathrm{CPh}\right), 2.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{HO}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.1$ [(1), $\left.\mathrm{CH}=\mathrm{CH}_{2}\right]$, 139.7 [(0), Ph], 139.1 [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 129.4, 128.3, 126.0 [(1), Ph], 114.6, 114.6 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 88.8$ [(1), CHO], 78.2 [(0), $\mathrm{COH}], 61.1\left[(3), \mathrm{CH}_{3} \mathrm{O}\right], 37.1\left[(2), \mathrm{CH}_{2} \mathrm{Ph}\right]$

(4S)-4-Allyloxy-3-vinylhepta-1,6-dien-3-ol (18e) and (S)-4-Allyloxynona-1,8-dien-5-one (19e)

Following procedure A , from $4 \mathrm{e}(0.72 \mathrm{~g}, 2.0 \mathrm{mmol})$ a mixture of 18e (59%) and 19 e (20%) was obtained. The compounds were separated by column chromatography on silica. Following procedure B, from $4 \mathbf{e}(0.72 \mathrm{~g}, 2.0 \mathrm{mmol}) \mathbf{1 8 e}(0.31 \mathrm{~g}, 79 \%)$ was obtained as a single isomer. Spectroscopic data for 18e: MS (EI) $m / z(\%) 195\left(\mathrm{M}^{+}+1,<5\right), 137(60), 93$ (40), 81 (50), 67 (50), 55 (100). IR (film) $v / \mathrm{cm}^{-1} 3465 \mathrm{br} w, 3079 \mathrm{w}, 2923 \mathrm{~m}, 1088 \mathrm{~m}, 995 \mathrm{~m}$, $921 \mathrm{~s}, 805$ w. Found: C, $73.6 \% ; \mathrm{H}, 9.2 \% . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, 74.2%; H, $9.3 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.00(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=17.3,10.8, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.96(\mathrm{dd}, 1 \mathrm{H}, J=17.3,10.8, H \mathrm{C}=$ $\left.\mathrm{CH}_{2}\right), 5.90-5.80\left(2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}_{2}\right), 5.34(\mathrm{dd}, 1 \mathrm{H}, J=17.3,1.5$, $H_{2} \mathrm{C}=\mathrm{CH}$), 5.33 (dd, $1 \mathrm{H}, J=17.3,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.21 (dddd, $\left.1 \mathrm{H}, J=17.3,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.17(\mathrm{dd}, 1 \mathrm{H}, J=10.8,1.5$, $H_{2} \mathrm{C}=\mathrm{CH}$), 5.17 (dd, $1 \mathrm{H}, J=10.8,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.12 (dddd, $\left.1 \mathrm{H}, J=10.3,1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.06(\mathrm{dddd}, 1 \mathrm{H}, J=17.3$,
$1.5,1.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}$), 5.00 (dddd, $1 \mathrm{H}, J=10.0,1.5,1.5,1.5$, $H_{2} \mathrm{C}=\mathrm{CH}$), 4.11 (dddd, $1 \mathrm{H}, J=12.5,5.5,1.5,1.5, H_{2} \mathrm{CO}$), 4.02 (dddd, $\left.1 \mathrm{H}, J=12.5,5.5,1.5,1.5, H_{2} \mathrm{CO}\right), 3.30(\mathrm{dd}, 1 \mathrm{H}, J=8.5$, $3.5, H \mathrm{CO}$), $2.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, H \mathrm{O}), 2.36(\mathrm{dm}, 1 \mathrm{H}, J=14.5$, $\mathrm{H}_{2} \mathrm{CCHO}$), 2.24 (dm, $1 \mathrm{H}, \mathrm{J}=14.5, \mathrm{H}_{2} \mathrm{CCHO}$). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.1,139.1,135.9,134.7$ [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 116.8, 116.7, 114.4, 114.4 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 84.6[(1), C H O], 78.1$ [(0), COH], 73.3 [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 35.3$ [(2), $\left.\mathrm{CH}_{2} \mathrm{CHO}\right] .[a]_{\mathrm{D}}^{22}-12.8$ (c 1.90 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Spectroscopic data for 19 e are reported below.

3-[(2S)-3,6-Dihydro-2H-pyran-2-yl)penta-1,4-dien-3-ol (18f) and 1-[(2S)-3,6-Dihydro-2H-pyran-2-yl)pent-4-en-1-one (19f)
Following procedure A , from $\mathbf{4 f}(0.55 \mathrm{~g}, 1.7 \mathrm{mmol})$ a mixture of $\mathbf{1 8 f}(0.12 \mathrm{~g}, 43 \%)$ and $19 \mathrm{f}(0.05 \mathrm{~g}, 19 \%)$ was obtained. The compounds were separated by column chromatography on silica. Following procedure B, from $\mathbf{4 f}(0.60 \mathrm{~g}, 1.8 \mathrm{mmol}) \mathbf{1 8 f}(0.19 \mathrm{~g}$, 62%) was obtained as a single isomer. Spectroscopic data for 18f: MS (EI) $m / z(\%) 167\left(\mathrm{M}^{+}+1,<5\right), 83$ (70), 55 (100). IR (film) $\mathrm{v} / \mathrm{cm}^{-1} 3477 \mathrm{br} \mathrm{m}, 2938 \mathrm{~m}, 1727 \mathrm{~m}, 1092 \mathrm{~s}, 924 \mathrm{~m}, 800 \mathrm{w}$, $656 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.97(\mathrm{dd}, 1 \mathrm{H}, J=17.3$, $10.8, H \mathrm{C}=\mathrm{CH}_{2}$), $5.92\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,10.8, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.78$ $(\mathrm{dm}, 1 \mathrm{H}, J=10.0, \mathrm{HC}=\mathrm{C} H), 5.65(\mathrm{dm}, 1 \mathrm{H}, J=10.0, \mathrm{HC}=\mathrm{C} H)$, $5.36\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.35(\mathrm{dd}, 1 \mathrm{H}, J=17.3$, $1.5, H_{2} \mathrm{C}=\mathrm{CH}$), $5.19\left(\mathrm{dd}, 1 \mathrm{H}, J=10.8,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.18$ (dd, $\left.1 \mathrm{H}, J=10.8,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.21(\mathrm{dm}, 1 \mathrm{H}, J=16.3, \mathrm{H} H \mathrm{CO})$, 4.16 (dm, 1H, $J=16.3, \mathrm{H} H \mathrm{CO}$), 3.48 (dd, $1 \mathrm{H}, J=10.8,3.3$, $H C O), 2.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, H \mathrm{O}), 2.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCOCHH}), 1.91(\mathrm{dm}$, $1 \mathrm{H}, J=17.5, \mathrm{HCOC} H \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8,138.2\left[(1), C H=\mathrm{CH}_{2}\right], 125.6,124.2[(1), \mathrm{HC}=\mathrm{CH}]$, 115.0, 114.6 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 78.2$ [(1), HCO$], 76.8[(0), \mathrm{COH}]$, 66.5 [(2), HHCO$], 25.0[(2), \mathrm{HHCCH}=] .[a]_{\mathrm{D}}^{24}-103.6$ (c 1.12 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
Spectroscopic data for 19f: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.82(\mathrm{dm}, 1 \mathrm{H}, J=10.0, \mathrm{C} H=\mathrm{CH}), 5.78$ (dddd, $1 \mathrm{H}, J=17.0$, $\left.10.5,6.5,6.5, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.71(\mathrm{dm}, 1 \mathrm{H}, J=10.0, \mathrm{C} H=\mathrm{CH})$, $5.00\left(\mathrm{dm}, 1 \mathrm{H}, J=17.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.94(\mathrm{dm}, 1 \mathrm{H}, J=10.5$, $H_{2} \mathrm{C}=\mathrm{CH}$), $4.30-4.17$ ($2 \mathrm{H}, \mathrm{H} H \mathrm{CO}$), 3.97 (dd, $1 \mathrm{H}, J=10.3,4.5$, $H C O), 2.68\left(\mathrm{dd}, 1 \mathrm{H}, J=7.3,7.3, \mathrm{H}_{2} \mathrm{CC}=\mathrm{O}\right), 2.32(\mathrm{dm}, 1 \mathrm{H}, J=$ $\left.7.3, H_{2} \mathrm{C}\right), 2.29\left(\mathrm{dm}, 1 \mathrm{H}, J=7.3, H_{2} \mathrm{C}\right), 2.22-2.12(3 \mathrm{H}, 3 \times$ $\mathrm{CH} H) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.7$ [(0), $\mathrm{C=O} \mathrm{O}, 137.1$ [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 126.1, 123.3 [(1), $\left.\mathrm{CH}=\mathrm{CH}\right], 115.1$ [(2), $\mathrm{CH}_{2}=$ $\mathrm{CH}], 78.4$ [(1), HCO], 65.9 [(2), HHCO], 37.1, 27.0, 26.9 [(2), CH_{2}].
(3S)-3-Allyloxy-4-hydroxy-4-vinylhex-5-enoic acid ethyl ester (18 g) and ($3 S$)-3-Allyloxy-4-oxooct-7-enoic acid ethyl ester (19g)
Following procedure A , from $4 \mathrm{~g}(1.51 \mathrm{~g}, 3.8 \mathrm{mmol})$ a mixture of $\mathbf{1 8 g}(0.39 \mathrm{~g}, 43 \%)$ and $\mathbf{1 9 g}(0.15 \mathrm{~g}, 17 \%)$ was obtained. The compounds were separated by column chromatography on silica. Spectroscopic data for 18g: MS (EI) m / z (\%) 241 (M ${ }^{+}+$ $1,<5$), 115 (80), 83 (40), 55 (100). IR (film): $v / \mathrm{cm}^{-1} 3503 \mathrm{br} \mathrm{w}$, 2983w, 1732s, 1307m, 1182m, 926m. Found: C, 64.4%; H, 8.1%. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, $64.5 \% ; \mathrm{H}, 8.4 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.98\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,10.8, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.89(\mathrm{dd}, 1 \mathrm{H}$, $J=17.3,10.8, H \mathrm{C}=\mathrm{CH}_{2}$), 5.79 (dddd, $1 \mathrm{H}, J=17.3,10.3,5.8$, 5.8, $H \mathrm{C}=\mathrm{CH}_{2}$), $5.33\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,1.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.32(\mathrm{dd}$, $1 \mathrm{H}, J=17.3,1.3, H_{2} \mathrm{C}=\mathrm{CH}$), 5.18 (dddd, $1 \mathrm{H}, J=17.3,1.5,1.5$, $\left.1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.16\left(\mathrm{dd}, 1 \mathrm{H}, J=10.8,1.3, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.13(\mathrm{dd}$, $1 \mathrm{H}, J=10.8,1.3, H_{2} \mathrm{C}=\mathrm{CH}$), 5.08 (dddd, $1 \mathrm{H}, J=10.3,1.5,1.5$, $\left.1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.14-4.02\left(4 \mathrm{H}, H_{2} \mathrm{CO}\right), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=8.0$, 4.0, HCO), 2.62 (dd, 1H, $J=16.1,4.0, H_{2} \mathrm{CC}=\mathrm{O}$), 2.46 (br s, 1 H , $H \mathrm{O}), 2.42\left(\mathrm{dd}, 1 \mathrm{H}, J=16.1,8.0, H_{2} \mathrm{CC}=\mathrm{O}\right), 1.20(\mathrm{t}, 3 \mathrm{H}, J=7.3$, $H_{3} \mathrm{CCH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3$ [(0), $\mathrm{C}=\mathrm{O}$], 139.8, 138.8, 134.5 [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 116.9, 114.7, 114.6 [(2), $\left.C \mathrm{H}_{2}=\mathrm{CH}\right], 81.1[(1), C \mathrm{HO}], 77.7[(0), \mathrm{COH}], 73.2,60.6[(2)$, $\left.\mathrm{CH}_{2} \mathrm{O}\right], 36.1$ [(2), $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right], 14.1\left[(3), \mathrm{CH}_{3}\right]$. [a] $]_{\mathrm{D}}^{25}-22.1$ (c 1.10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Spectroscopic data for 19g: MS (EI) $m / z(\%) 241\left(\mathrm{M}^{+}+1\right.$, <5), 157 (20), 138 (40), 115 (100), 71 (30), 55 (80). IR (film) $\mathrm{v} / \mathrm{cm}^{-1} 2981 \mathrm{~m}, 2931 \mathrm{~m}, 1729 \mathrm{~s}, 1373 \mathrm{~m}, 1184 \mathrm{~m}, 995 \mathrm{~m}, ~ 921 \mathrm{~m}$. Found: C, $64.4 \% ; \mathrm{H}, 8.4 \% \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, $64.5 \% ; \mathrm{H}$, 8.4%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84$ (dddd, $1 \mathrm{H}, J=17.1$, $10.5,5.8,5.8, H \mathrm{C}=\mathrm{CH}_{2}$), 5.76 (dddd, $1 \mathrm{H}, J=17.1,10.3,6.5,6.5$, $H \mathrm{C}=\mathrm{CH}_{2}$), $5.24\left(\mathrm{dm}, 1 \mathrm{H}, J=17.1, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.16(\mathrm{dm}, 1 \mathrm{H}, J=$ $\left.10.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.99\left(\mathrm{dm}, 1 \mathrm{H}, J=17.1, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.92(\mathrm{dm}$, $1 \mathrm{H}, J=10.3, H_{2} \mathrm{C}=\mathrm{CH}$), 4.11 (dd, $1 \mathrm{H}, J=6.5,5.3, H \mathrm{CO}$), 4.10 (q, $\left.2 \mathrm{H}, J=7.0, H_{2} \mathrm{CCH}_{3}\right), 4.03\left(\mathrm{dm}, 2 \mathrm{H}, J=6.5, H_{2} \mathrm{CCHO}\right)$, 2.80-2.55 (4H, $\left.H_{2} \mathrm{C}\right), 2.28$ (ddm, 2H, $\left.J=14.8,7.0, H_{2} \mathrm{C}\right), 1.20(\mathrm{t}$, $3 \mathrm{H}, J=7.0, \mathrm{H}_{3} \mathrm{CCH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2$, 170.3 [(0), C=O], 137.0, 133.7 [(1), $\mathrm{CH}=\mathrm{CH}_{2}$], 117.9, 115.2 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 80.5$ [(1), CHO], 71.8, 60.8 [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 37.6,36.8$, 27.0 [(2), CH_{2}], 14.0 [(3), $C \mathrm{H}_{3}$]. [al] $]_{\mathrm{D}}^{25}-19.4\left(c 1.10\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Procedure for the selective preparation of 19 e by vinylcuprate addition to 4 e

To a suspension of CuI ($0.53 \mathrm{~g}, 2.8 \mathrm{mmol}$) in THF (40 ml) was added a solution of vinylmagnesium chloride (4.1 ml of a 1.7 M solution in THF, 6.9 mmol) at $-78^{\circ} \mathrm{C}$. After 30 min at this temperature, $\mathbf{4 e}(0.49 \mathrm{~g}, 1.4 \mathrm{mmol})$ in THF (5 ml) was added. After 24 h at $-10^{\circ} \mathrm{C}$ the reaction was quenched at 50% conversion by addition of water. After usual aqueous work-up the product 19 e ($0.12 \mathrm{~g}, 45 \%$) was isolated by column chromatography on silica, along with recovered starting material $\mathbf{4 e}$ $(0.22 \mathrm{~g}, 45 \%)$ and bornane sultam 13 ($0.12 \mathrm{~g}, 40 \%$). MS (EI) $\mathrm{m} / \mathrm{z}(\%) 195\left(\mathrm{M}^{+}+1,5 \%\right), 137$ (55), 55 (100). IR (film) v / cm^{-1} $2962 \mathrm{~s}, 1719 \mathrm{~s}, 1261 \mathrm{~s}, 803 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.86$ (dddd, $\left.1 \mathrm{H}, J=17.5,10.5,5.7,5.3,=\mathrm{CHCH}_{2} \mathrm{O}\right), 5.81-5.70(2 \mathrm{H}$, $\left.H \mathrm{C}=\mathrm{CH}_{2}\right), 5.26\left(\mathrm{dm}, 1 \mathrm{H}, J=17.2,=\mathrm{CH}_{2}\right), 5.17(\mathrm{dm}, 1 \mathrm{H}, J=$ $\left.10.5,=\mathrm{CH}_{2}\right), 5.08\left(\mathrm{dm}, 1 \mathrm{H}, J=17.0,=\mathrm{CH}_{2}\right), 5.04(\mathrm{dm}, 1 \mathrm{H}$, $\left.J=10.2,=\mathrm{CH}_{2}\right), 5.01\left(\mathrm{dm}, 1 \mathrm{H}, J=17.2,=\mathrm{CH}_{2}\right), 4.94(\mathrm{dm}, 1 \mathrm{H}$, $\left.J=10.2,=\mathrm{CH}_{2}\right), 4.01\left(\mathrm{ddm}, 1 \mathrm{H}, J=12.7,5.5, \mathrm{OCH}_{2}\right), 3.93$ (ddm, $\left.1 \mathrm{H}, J=12.7,5.7, \mathrm{OCH}_{2}\right), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=6.2,6.2$, CHO), 2.62-2.25 ($6 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $211.4[(0), C=\mathrm{O}], 137.1,133.9,133.0\left[(1), C H=\mathrm{CH}_{2}\right], 117.9$, 117.6, 115.2 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 84.2$ [(1), CHO$], 71.3$ [(2), $\left.\mathrm{CH}_{2} \mathrm{O}\right]$, 37.3, 36.4, $27.0\left[(2), \mathrm{CH}_{2}\right] \cdot[a]_{\mathrm{D}}^{22}-27.4$ (c 1.35 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

[(2S,3S)-3-Hydroxy-3-vinyl-3,6-dihydro-2H-pyran-2-yl)acetic acid ethyl ester (20)

Following the general procedure for ring closing metathesis reactions, from $\mathbf{1 8 g}(0.13 \mathrm{~g}, 0.54 \mathrm{mmol})$ and Grubbs' catalyst $(13 \mathrm{mg}, 3 \mathrm{~mol} \%)$ a mixture of diastereoisomers of 20 [$(2 S, 3 S):(2 S, 3 R)=3: 1)(77 \mathrm{mg}, 67 \%)$ was isolated. MS (EI) $m / z(\%) 211\left(\mathrm{M}^{+}-1,<5\right), 107(20), 95$ (100), 77 (50), 67 (70). IR (film) $v / \mathrm{cm}^{-1} 3469 \mathrm{br}$ m, 2983w, 1744s, $1300 \mathrm{~m}, 1182 \mathrm{~m}, 929 \mathrm{~m}$. Found: C, $61.8 \% ; \mathrm{H}, 7.2 \% . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, $62.2 \% ; \mathrm{H}$, $7.6 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88(\mathrm{dm}, 1 \mathrm{H}, J=10.0$, CHCH), 5.71 (ddd, $1 \mathrm{H}, J=10.0,2.0,2.0, \mathrm{CHCH}$), 5.71 (dd, $\left.1 \mathrm{H}, J=17.3,10.8, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.37\left(\mathrm{dd}, 1 \mathrm{H}, J=17.3,1.5, H_{2} \mathrm{C}=\right.$ $\mathrm{CH}), 5.18\left(\mathrm{dd}, 1 \mathrm{H}, J=10.8,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 4.16-4.08(4 \mathrm{H}$, $H_{2} \mathrm{CO}, \mathrm{H} H \mathrm{CO}$), 3.85 (dd, $\left.1 \mathrm{H}, J=7.3,5.0, H \mathrm{CO}\right), 2.53(\mathrm{dm}, 1 \mathrm{H}$, $J=7.3, H_{2} \mathrm{CC}=\mathrm{O}$), $2.52\left(\mathrm{dm}, 1 \mathrm{H}, J=5.0, H_{2} \mathrm{CC}=\mathrm{O}\right), 2.30(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, H \mathrm{O}), 1.20\left(\mathrm{t}, 3 \mathrm{H}, J=7.3, H_{3} \mathrm{CCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.9[(0), \mathrm{C}=\mathrm{O}], 138.4$ [(1), $\left.\mathrm{CH}=\mathrm{CH}_{2}\right], 130.1,128.6$ [(1), $\mathrm{HC}=\mathrm{CH}], 116.0$ [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 78.2$ [(1), HCO$], 69.7$ [(0), $-\mathrm{CHHCH}=], 66.0,60.5$ [(2), $\mathrm{CH}_{2} \mathrm{O}$], 34.6 [(2), $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$], 14.1 [(3), CH_{3}].

NMR spectroscopic data for the minor diastereomer (obtained from the mixture): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89\left(\mathrm{dd}, 1 \mathrm{H}, J=17.5,10.5, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.76(\mathrm{dm}, 1 \mathrm{H}, J=10.0$, $C \mathrm{H}=C \mathrm{H}), 5.56(\mathrm{ddd}, 1 \mathrm{H}, J=10.0,2.3,2.3, C \mathrm{H}=C \mathrm{H}), 5.28$ (dd, $\left.1 \mathrm{H}, J=17.5,1.5, H_{2} \mathrm{C}=\mathrm{CH}\right), 5.17$ (dd, $1 \mathrm{H}, J=10.5,1.5$, $H_{2} \mathrm{C}=\mathrm{CH}$), 4.14-4.04 ($4 \mathrm{H}, \mathrm{H}_{2} \mathrm{CO}$), 3.84 (dd, $1 \mathrm{H}, J=7.0,4.3$, HCO), $2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, H \mathrm{O}), 2.61\left(\mathrm{dd}, 1 \mathrm{H}, J=16.1,4.3, H_{2} \mathrm{CC}=\right.$ O), $2.35\left(\mathrm{dm}, 1 \mathrm{H}, J=16.1, H_{2} \mathrm{CC}=\mathrm{O}\right), 1.20(\mathrm{t}, 3 \mathrm{H}, J=7.3$, $\left.\mathrm{H}_{3} \mathrm{CCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2[(0), \mathrm{C}=\mathrm{O}]$,
137.8 [(1), $\left.\mathrm{CH}=\mathrm{CH}_{2}\right], 130.9,126.1$ [(1), C4, C5], 114.9 [(2), $\left.\mathrm{CH}_{2}=\mathrm{CH}\right], 77.6$ [(1), C2], 71.2 [(0), C3], 65.8, 60.7 [(2), $\mathrm{CH}_{2} \mathrm{O}$, C6], 35.634.6 [(2), $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$], 14.0 [(3), CH_{3}].

1-[(R)-1-Methyl-2-phenylethyl]cyclopent-3-enol (21)

No conversion of diallylcarbinol $\mathbf{1 0 b}$ to cyclopentenol 21 was observed at ambient temperature. In refluxing toluene (20 ml) in the presence of Grubbs' catalyst ($253 \mathrm{mg}, 5 \mathrm{~mol} \%$) $\mathbf{1 0 b}(1.42$ $\mathrm{g}, 6.2 \mathrm{mmol}$) reacted smoothly to give $21(0.99 \mathrm{~g}, 79 \%)$. MS (EI) $\mathrm{m} / \mathrm{z}(\%) 202\left(\mathrm{M}^{+},<5\right), 186$ (100), 91 (20). IR (film) $v / \mathrm{cm}^{-1} 3454$ bm, 3060m, 3026m, 2967m, 2933m, 1464m, 885m, 702s. Found: C, $82.4 \% ; \mathrm{H}, 8.4 \% . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ requires C, $83.1 \% ; \mathrm{H}, 9.0 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.25(2 \mathrm{H}, \mathrm{Ph}), 7.21-7.15(3 \mathrm{H}$, Ph), 5.74 (s, 2H, $H \mathrm{C}=\mathrm{CH}$), 2.99 (dd, $1 \mathrm{H}, J=13.3,3.0, H_{2} \mathrm{CPh}$), $2.61\left(\mathrm{~d}, 1 \mathrm{H}, J=16.5, H_{2} \mathrm{C}\right), 2.56\left(\mathrm{~d}, 2 \mathrm{H}, J=16.5, H_{2} \mathrm{C}\right), 2.43$ (d, 1H, $\left.J=16.8, H_{2} \mathrm{C}\right), 2.36$ (dd, $1 \mathrm{H}, J=13.3,10.8, H_{2} \mathrm{CPh}$), $2.33\left(\mathrm{~d}, 1 \mathrm{H}, J=16.8, H_{2} \mathrm{C}\right), 1.89(\mathrm{dqd}, 1 \mathrm{H}, J=10.8,6.5,3.0$, $H C H H_{3}$), $1.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, H \mathrm{O}), 0.86\left(\mathrm{~d}, 1 \mathrm{H}, J=6.5, H_{3} \mathrm{C}\right)$. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.5$ [(0), Ph], 129.6, 128.7, 128.6, 128.1, 125.6 [(1), $\left.\mathrm{Ph}, \mathrm{CH}=\mathrm{CH}_{2}\right], 84.0$ [(0), COH$], 46.3$, 46.0 [(2), $C_{2} \mathrm{H}_{2}$], $44.4\left[(1), C \mathrm{HCH}_{3}\right], 38.3$ [(2), $\left.\mathrm{CH}_{2}\right], 14.1$ [(3), $\left.\mathrm{CH}_{3}\right] \cdot[a]_{\mathrm{D}}^{24}+4.5\left(c 1.55\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Acknowledgements

Generous financial support from the DFG and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Prof. P. Eilbracht for encouragement and support.

References

1 P. Eilbracht, G.-E. Hüttmann and R. Deußen, Chem. Ber., 1990, 123, 1063.
2 L. D. Quin, M. D. Gordon and J. E. MacDiarmid, J. Heterocycl. Chem., 1982, 19, 1041.
3 D. B. Smith, Z. Wang and S. L. Schreiber, Tetrahedron, 1990, 46, 4793.

4 V. Jäger, D. Schröter and B. Koppenhoefer, Tetrahedron, 1991, 47, 2195.

5 S. Hatakeyama, K. Sakurai, H. Numata, N. Ochi and S. Takano, J. Am. Chem. Soc., 1988, 110, 5201

6 P. G. Andersson and J.-E. Bäckvall, J. Org. Chem., 1991, 56, 5349
7 K. Tamao, T. Tohma, N. Inui, O. Nakayama and Y. Ito, Tetrahedron Lett., 1990, 31, 7333.
8 F. Villar, O. Equey and P. Renaud, Org. Lett., 2000, 2, 1061.
9 D. S. La, J. B. Alexander, D. R. Cefalo, D. D. Graf, A. H. Hoveyda and R. R. Schrock, J. Am. Chem. Soc., 1998, 120, 9720.
10 T. J. Seiders, D. W. Ward and R. H. Grubbs, Org. Lett., 2001, 3, 3225.

11 M. J. Bassindale, P. Hamley, A. Leitner and J. P. A. Harrity, Tetrahedron Lett., 1999, 40, 3247.
12 M. Lautens and G. Hughes, Angew. Chem., 1999, 111, 160; M. Lautens and G. Hughes, Angew. Chem., Int. Ed., 1999, 38, 129.

13 B. Schmidt and H. Wildemann, Synlett, 1999, 1591.
14 B. Schmidt and H. Wildemann, J. Org. Chem., 2000, 65, 5817.
15 D. J. Wallace, C. J. Cowden, D. J. Kennedy, M. S. Ashwood, I. F. Cottrell and U.-H. Dolling, Tetrahedron Lett., 2000, 41, 2027.
16 J. L. Leighton and E. Chapman, J Am. Chem. Soc., 1997, 119, 12416.

17 M. J. Zacuto and J. L. Leighton, J. Am. Chem. Soc., 2000, 122, 8587.
18 H. Cao, S. G. Van Ornum and J. M. Cook, Tetrahedron Lett., 2000, 41, 5313.
19 S. A. Kozmin, Org. Lett., 2001, 3, 755.
20 P. Müller and Z. S. Miao, Helv. Chim. Acta, 1994, 77, 1826.
21 Y. N. Bubnov, M. A. Misharin and A. V. Ignatenko, Tetrahedron Lett., 1997, 38, 6259.
22 G. A. Molander, P. J. Nichols and B. C. Noll, J. Org. Chem., 1998, 63, 2292.
23 S. Okamoto and T. Livinghouse, J. Am. Chem. Soc., 2000, 122, 1223.
24 D. L. J. Clive and H. Cheng, Chem. Commun., 2001, 605.
25 M. Michaut, M. Santelli and J.-L. Parrain, J. Organomet. Chem., 2000, 606, 93.
26 D. J. Wallace, P. G. Bulger, D. J. Kennedy, M. S. Ashwood, I. F. Cottrell and U.-H. Dolling, Synlett, 2001, 357.
27 B. Schmidt and H. Wildemann, J. Chem. Soc., Perkin Trans. 1, 2000, 2916.

28 D. J. Wallace, J. M. Goodman, D. J. Kennedy, A. J. Davies, C. J. Cowden, M. S. Ashwood, I. F. Cottrell, U.-H. Dolling and P. J. Reider, Org. Lett., 2001, 3, 671.

29 D. A. Evans, Aldrichimica Acta, 1982, 15, 23
30 D. A. Evans, in Stereoselective Alkylation Reactions of Chiral Metal Enolates, ed. J. D. Morrison, Academic Press, New York, 1984
31 W. Oppolzer, Tetrahedron, 1987, 43, 1969.
32 C. Kashima, X. C. Huang, Y. Harada and A. Hosomi, J. Org. Chem., 1993, 58, 793.
33 D. P. Curran and T. A. Heffner, J. Org. Chem., 1990, 55, 4585.
34 D. A. Evans, J. R. Gage and J. L. Leighton, J. Am. Chem. Soc., 1992, 114, 9434.
35 P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100.
36 M. Lautens, G. Hughes and V. Zunic, Can. J. Chem., 2000, 78, 868
37 S. Nahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22, 3815.
38 C. Agami, F. Couty and H. Mathieu, Tetrahedron Lett., 1998, 39, 3505.

39 M. J. Batchelor, R. J. Gillespie, J. M. C. Golec, C. J. R. Hedgecock, S. D. Jones and R. Murdoch, Tetrahedron, 1994, 50, 809.

40 P. A. Wender, K. D. Rice and M. E. Schnute, J. Am. Chem. Soc., 1997, 119, 7897.
41 D. L. Comins and J. J. Herrick, Tetrahedron Lett., 1984, 25, 1321
42 M. Kawashima, T. Sato and T. Fujisawa, Tetrahedron, 1989, 45, 403.
43 B. Schmidt and M. Westhus, Tetrahedron, 2000, 56, 2421.
44 C. M. Huwe, J. Velder and S. Blechert, Angew. Chem., 1996, 108, 2542; C. M. Huwe, J. Velder and S. Blechert, Angew. Chem., Int. Ed. Engl., 1996, 35, 2376.
45 B. Schmidt, J. Chem. Soc., Perkin Trans. 1, 1999, 2627.

